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Abstract Multibody models are useful to describe the macroscopic motion of the elements
of physical systems. Modeling contact in such systems can be challenging, especially if fric-
tion at the contact interface is taken into account. Furthermore, the dynamics equations of
multibody systems with contacts and Coulomb friction may become ill-posed due to fric-
tion coupling, as in the Painlevé paradox, where a solution for system dynamics may not be
found. Here, the dynamics problem is considered following a general approach so that fric-
tion phenomena, such as dynamic jamming, can be analyzed. The effect of the contact forces
on the velocity field of the system is the cornerstone of the proposed formulation, which is
used to analyze friction coupling in multibody systems with a single contact. In addition, we
introduce a new representation of the so-called generalized friction cone, a quadratic form
defined in the contact velocity space. The geometry of this cone can be used to determine the
critical cases where the solvability of the system dynamic equations can be compromised.
Moreover, it allows for assessing friction coupling at the contact interface, and obtaining
the values of the friction coefficient that can make the dynamics formulation inconsistent.
Finally, the classical Painlevé example of a single rod and the multibody model of an ar-
ticulated arm are used to illustrate how the proposed cone can detect the cases where the
dynamic equations have no solution, or multiple solutions.
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1 Introduction

Modeling, analyzing, and simulating multibody systems with contacts are ongoing research
topics. Considering friction at the contact interface increases the complexity of the model,
thus presenting some challenges, especially when the solution of the dynamic equations is
required. The Coulomb friction model is very representative for modeling contact, and is
able to describe the macroscopic motion of the bodies in the system, which is convenient
in rigid multibody systems. Moreover, this model is well-known for capturing phenomena
related to friction, such as the stick–slip transition [1]. However, the use of Coulomb friction
can make the dynamic equations have no solution or several, under some circumstances,
which gives rise to the Painlevé paradox [2, 3].

In the absence of friction, contact can be modeled with unilateral constraints. In such a
case, the dynamic formulation with frictionless contacts leads to a linear complementarity
problem (LCP) [4], for which the existence of solution is guaranteed [5] and various solver
algorithms are available [6–8]. On the other hand, if unilateral constraints with Coulomb
friction are used to model the contact interaction, the formulation in general leads to a
nonlinear complementarity problem (NCP) [9]. The solution of such problems cannot be
guaranteed in a systematic way, and there are not as many solver algorithms available as for
LCP problems. Faceted (or polyhedral) approximations of the friction cone can be used to
lead the model back to an LCP problem. These can be classified into two main approaches:
velocity discretization [10, 11], and force discretization [12, 13] methods. The solvability of
these formulations may be compromised in some circumstances [14–16], where there is no
solution for the forces and accelerations of the system. Nevertheless, it is possible to formu-
late the equations at the velocity level by introducing a finite difference approximation of
the accelerations, so that a solution for the velocities and impulses can always be found [12].

Some authors have proposed formulations for nonsmooth systems that rely on the max-
imum dissipation principle [17–19]. In some cases, this makes it possible to formulate the
impulse–momentum dynamics as a convex optimization problem [17] or a monotone opti-
mization problem [19]. However, if there is friction coupling, i.e., the contact normal and
tangent directions are coupled to each other, then the contact problem with Coulomb friction
leads to non-convex optimization problems. To overcome this, the problem can be convexi-
fied by using the dual of the friction cone [20, 21]. The maximum dissipation principle was
also used in [22] to derive a generalized fiction law, which can cope with the indeterminacy
problem of Painlevé-like examples by choosing one solution from all available, although the
solution might not be unique.

Friction in sliding contacts can cause a phenomenon known as dynamic jamming (or
locking) [23–25], which is very closely related to the jamb process in collisions [26, 27].
Essentially, due to friction coupling, the kinetic friction force can generate a compression of
the contact interface, similar to an impact but without a collision, which leads to an abrupt
change in the velocities [9, 25, 28]. Depending on how the system dynamics is formulated,
it is not possible to find a solution for the contact force, therefore making it impossible to
determine the system acceleration. To resolve this problem, the dynamic equations can be
reformulated at the impulse–momentum level, so that the system velocity right after the
locking process can be determined [24, 29]. However, it is also possible to characterize
the system compliance at the contact interface, which allows it to compress and develop the
required contact force [30]. Then, the time integration can continue and the system dynamics
can be formulated as desired [31, 32].

The friction cone arises from the fact that the Coulomb model limits the magnitude of the
static friction force; consequently, the resultant contact force vector of a non-sliding contact
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must lie within the cone. Moreover, the contact force of a sliding contact must lie on the
surface of the cone, because the magnitude of the friction force is proportional to the normal
force component. On the other hand, the generalized friction cone is a concept that goes
beyond the contact forces and takes the system dynamics into account. Erdmann [33] intro-
duced the generalized friction cone for one rigid body with planar motion, which was used
to describe the effect of the contact forces onto the generalized coordinates and velocities.
In addition, he noted that the dynamic equations may become inconsistent when the cone
dips below the tangent plane. Similarly, Génot and Brogliato [28] reported that the shape of
the generalized friction cone is directly related to the existence of solution of the dynamic
formulation for the so-called Painlevé example. Interestingly, the shape of this cone depends
not only on the friction coefficient, but also on the configuration and mass distribution of the
system. However, it is defined in the multidimensional velocity space, and so the visualiza-
tion of that cone is not always possible, except for simple cases with one body in planar
motion [28, 33].

In this paper, we propose a new representation of the generalized friction cone that is
defined in the contact space as opposed to the velocity space of the system. The contact
space is a 3-dimensional space for one contact point in a system with general spatial motion,
which helps to visualize the cone and allows us to analyze the effect of friction coupling
in multibody systems. The implicit equation of the cone for one contact point is derived
and analyzed. Moreover, the limit value of the friction coefficient for which the dynamic
equations of the system can become inconsistent is obtained analytically. The dynamics of
systems with contact and friction is discussed with a general approach, and the existence of
solution is assessed for several examples.

2 Dynamics of multibody systems with contact

Let v be the array of the n generalized velocities of a multibody system, and q the set of p

generalized coordinates such that

q̇ = Nv (1)

where N(q) is the p × n transformation matrix that depends on the parametrization of both
the configuration and velocity of the system. This definition makes the approach more gen-
eral, because the elements of q and v can also be defined using non-holonomic velocity
components. For instance, if Euler parameters are used as generalized coordinates, and an-
gular velocity components as generalized velocities [34]. Therefore, p ≥ n in general.

The components of v parametrize the tangent space that locally represents the configu-
ration space defined by q. Then, the dynamic equations that govern the system associated
with the generalized velocities v are

Mv̇ + c = f (2)

where M(q) is the n×n positive-definite mass matrix, c contains the Coriolis and centrifugal
terms, and f represents internal and external generalized forces.

Interaction through contact is commonly modeled as force vectors, which are applied on
one or several contact points, depending on the level of complexity of the interacting sur-
faces. By choosing a set of contact points, the array of generalized forces can be expressed
as

f = f0 + ATλc (3)
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where f0 contains the generalized forces of the other known forces and torques (external or
internal), and other interactions; λc are the r contact force components of the contacts con-
sidered, and A(q) is the r × n contact Jacobian matrix that maps the generalized velocities
to the contact velocity components

uc = Av. (4)

This definition of the generalized contact forces is general for any number of contacts, and
also for contacts with friction, because the components in λc can represent both normal
and friction force components as it is shown below. These r force components represent the
contact interaction, and for one contact point with friction, one normal component and two
tangential components are needed. This section focuses on the effect that contact interactions
have on the dynamics of a multibody system, which will be used to analyze contacts with
Coulomb friction later on.

Generally, the force components can be defined via either constitutive relations or kine-
matic constraints. By using a constitutive relation, the force components λc = λc(q,v, t)

are fully given by the state of the system (and other state variables of the contact model,
such as in bristle-based friction models [35]). On the other hand, the force components λc

become unknowns of the dynamic equations if the contact velocities are constrained, so that
uc = b(q, t) for bilateral contacts, or uc ≥ b(q, t) for unilateral contacts; and usually b ≡ 0.
Nevertheless, to keep a general approach, we will not make a distinction here between force
definition via constitutive relations or kinematic constraints.

The infinitesimal change in the system velocity vector is given by (2) and (3) as

dv = δvc + δv0 (5)

where

δvc = M−1ATλc dt, (6)

δv0 = M−1(f0 − c)dt (7)

are the contribution of the contact forces λc and all the other forces to the total velocity
change dv, respectively. It is important to mention that the notation “dx” is used for the
infinitesimal change in the variable “x”, while “δy” only indicates a contribution to an in-
finitesimal change, and therefore, “y” does not necessarily exist.

Contact forces λc only affect a certain component of the total velocity increment accord-
ing to (6), which is confined in a subspace spanned by the columns of M−1AT. The dimen-
sion of this subspace is equal to the rank of the Jacobian matrix A since the mass matrix M
is full rank. Moreover, it is possible to decompose the system velocity into two orthogonal
complement subspaces of the tangent space [36], so that the contact forces only affect the
dynamics of the system in one of them, which shall be called contact space (see Fig. 1).

The component of the generalized velocity vector in the contact space can be defined via
the projection

vc = Pcv (8)

where the idempotent projector matrix is

Pc = M−1AT
(
AM−1AT

)−1
A, (9)

which can be computed straightforwardly if there is no redundancy in the contact force
components, i.e., A is full row rank [36]. Otherwise, if the contact forces are redundant,
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Fig. 1 Illustration of the
configuration space q, and the
velocity space parametrized by
v = [v1, v2, v3]T, where n = 3
only as an example. Note that the
contribution of the contact forces
λc to the change in the system
velocity v only affects the
velocity component in the contact
space vc = Pcv

a set of independent rows of A could be selected to compute the projector matrix. Other
numerical techniques can also be used, but the properties associated with this projection
would still hold in any case [36]. This projector operator allows us to decompose the system
velocity to two components

v = vc + va (10)

where va = (In − Pc)v is the orthogonal complement of the velocity component in the con-
tact space vc, and In is the n × n identity matrix. This decomposition allows us to decouple
the dynamics of the system in these two subspaces. Here, only the contact space is relevant
for our purpose, because it is the only one affected by the contact dynamics.

The total change in the velocity can be decomposed as

dv = dvc + dva = Pc dv + (In − Pc)dv (11)

where

dvc = δvc + Pcδv0, (12)

which contains the change in velocity due to the contact force δvc in Eq. (6). It can be shown
that the projection matrix Pc does not affect this component, i.e., δvc = Pcδvc. Therefore,
the contact forces only affect the velocity component in the contact space vc, as illustrated
in Fig. 1.

The contact space represents the components of the velocity field of the system that are
affected by the contact forces. Since the velocity field of the system can be parametrized
by the generalized velocities v, one possible parametrization of the contact space is given
by the component vc. The contact velocity components uc can also parametrize the contact
space given the relation

vc = Pcv = M−1AT
(
AM−1AT

)−1
uc (13)

where the relation uc = Av has been used. Therefore, the contact velocity uc provides a
parametrization that can be used to represent the system dynamics in the contact space [36].
Moreover, the r contact velocity components in uc are independent from each other if the
contact forces are not redundant. However, the n generalized velocities in vc are dependent
as long as the contact space is smaller than the tangent space (i.e., Pc �= In).

Likewise, the change in the contact velocities is given by

duc = δuc + δu0 (14)
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where

δuc = AM−1ATλc dt, (15)

δu0 = (
AM−1(f0 − c) + Ȧv

)
dt (16)

are the contribution to the change in the contact velocities uc of the contact forces λc, and the
contribution of the rest of the forces acting on the system, respectively. Note that Ȧ denotes
the time derivative of the contact Jacobian matrix. The idea that the system dynamics can be
projected to a subspace parametrized by the contact velocities uc makes it possible to study
the dynamics of multibody systems with contacts only in the contact space, which is used
below to analyze systems with contact and Coulomb friction.

As reported in the literature [2, 3, 5, 9, 25, 28, 30–32], paradoxical situations may arise
when Coulomb friction is used in models of rigid bodies, which can even happen in systems
of only one body in planar motion and one single contact point. In this paper, we aim to illus-
trate these phenomena for more complex multibody systems with motion in 3-dimensional
space and a single contact point. Nonetheless, the analysis performed can be extended to
systems with multiple contact points by taking the appropriate considerations into account.
For instance, if contact is modeled via constraints, the analysis of one of the contact points
can be done by projecting the dynamics of the multibody system into a subspace that is not
affected by the contact forces at the other points, as explained in [36].

3 Contact with Coulomb friction

The interaction between bodies through frictional contact can be described by the Coulomb
model, which defines the contact force components based on a nonsmooth friction law. The
force acting on each contact point can be decomposed as

λc =
[
λt

λn

]
(17)

where λt = [λt1 λt2]T ∈ R
2 are the tangential force components along two orthogonal direc-

tions in the tangent plane, which are associated with friction, and λn ∈R is the normal force
component. Accordingly, the contact velocity of each contact point in a multibody system
can be parametrized by the normal velocity component un ∈ R and the two tangential com-
ponents in ut = [ut1 ut2]T ∈R

2 (or sliding velocity), which can be arranged in matrix form as

uc =
[

ut

un

]
=

[
At

An

]
v = Av. (18)

The Coulomb friction model defines the friction force with two phases: static and kinetic.
In the static phase, friction acts as a constraint to prevent the contact point from sliding, i.e.,
ut = 0. However, the magnitude of the static friction force is limited by the static friction
coefficient μs as

‖λt‖ =
√
λT

t λt < μsλn. (19)

On the other hand, the kinetic friction force always opposes the sliding velocity, and can be
defined as

λt = −μkλnet (20)

where μk is kinetic friction coefficient. The sliding direction is defined by the unit vector
et = ut

‖ut‖ ∈R
2, which is the direction of the sliding velocity vector ut.
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Equation (19) defines the region inside the classic friction cone, in which the contact
force λc is contained, if the contact is not sliding. This cone becomes part of the dynamics
formulation to establish the bounds of the static friction force. When unilateral constraints
are used to define the normal contact force, an NCP problem can be formulated. Neverthe-
less, faceted approximations of the friction cone can make the equations formulate an LCP
problem [11–13].

On the other hand, all possible kinetic friction forces given by (20) generate a conic
surface parametrized by the normal force λn and the sliding direction et, on which all the
possible contact forces lie. Even though the direction of the kinetic friction force is deter-
mined by a given sliding velocity, looking at all the possible directions of the contact force
as a conic surface can help to gain insight into the friction phenomenon, as it will be shown
below. Therefore, the classic friction cone κμ can be defined as the region inside the conic
surface given by

κμ(λc) = λT
c Qμλc =

[
λt

λn

]T [
I2 0
0 −μ2

][
λt

λn

]
= 0 (21)

where I2 is the 2 × 2 identity matrix, and μ is the friction coefficient (μs or μk for static or
kinetic friction, respectively).

4 The generalized friction cone

To analyze the effect of Coulomb friction in multibody systems, a similar concept to the
friction cone κμ can be considered. The generalized friction cone κg for a contact point
takes the dynamics of the system into account and describes the effect of the contact forces
on the change in velocity of the system. The contribution to the change in the generalized
velocities in Eq. (6) due to contact forces in the friction cone is

δvc = M−1ATλc dt, λc ∈ R
3 : κμ(λc) ≤ 0, (22)

which gives a parameterization of the generalized friction cone in the velocity space [28].
For each contact point, by using the Coulomb law in Eq. (20), the surface of the cone can be
parametrized by the two friction force components λt ∈R

2 as

δvc(λt) = M−1

(
AT

t λt + 1

μ
AT

n

√
λT

t λt

)
dt (23)

for any μ > 0. Here, either the kinetic or static friction coefficients can be used, depending
on whether or not the contact is sliding. The parameterization in Eq. (23) generates a conic
surface with every possible δvc associated with all the contact forces λc that satisfy Eq. (21).
In case of kinetic friction δvc lies on the surface of the cone, whereas for static friction δvc

lies in the region inside the cone.
This cone lives in the tangent space, which is an n-dimensional space, and so its rep-

resentation can be challenging. In order to visualize the cone, it can be projected onto a
subspace. However, some information may be lost in the projection if the contact space is
not contained in that subspace. This is because, the total effect of the contact forces δvc is
contained in the contact space, see Eq. (12). For instance, in [28], the velocity space of the
system with one rigid body in planar motion has dimension n = 3, but the generalized cone
is represented using only two velocities: the vertical velocity component, and the angular
velocity. In that representation, it is not possible to see the effect of the contact force on the
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horizontal velocity, and this information cannot be visualized. Although, the contact space
has dimension r = 2, since the contact is in planar motion, the total effect of the contact
forces is not represented. This might not be a problem for such simple examples, but this
issue can be difficult to address for problems with a larger number of degrees of freedom.

Here, we perform a meaningful projection of the generalized cone onto the contact space,
so that it preserves the topology and properties of the original cone. As shown above,
the infinitesimal change δvc due to the contact forces lies in the contact space, which is
parametrized by the contact velocity components uc. From Eq. (15), the contact force com-
ponents can be related to the infinitesimal change in the contact velocities as

λc dt = Mcδuc (24)

where Mc = (AM−1AT)−1 is the effective mass matrix of the system in the contact space.
The elements of effective mass can be derived from the elements of the inverse effective
mass

M−1
c = AM−1AT =

[
AtM−1AT

t AtM−1AT
n

AnM−1AT
t AnM−1AT

n

]

=
[

H h
hT a

]
. (25)

Here, the 2 × 2 matrix H = AtM−1AT
t and the scalar a = AnM−1AT

n account for the
mass along the tangent and normal directions, respectively. The off-diagonal element
h = AtM−1AT

n reflects the coupling between the normal and tangential directions, which
will be of interest later.

Then, the elements of the mass matrix

Mc =
[

Mt mtn

mT
tn mn

]
(26)

can be computed from Eq. (25) by using the block matrix inversion formula as [36]

Mc =
[

H h
hT a

]−1

=
[
(H − ha−1hT)−1 mtn

mT
tn (a − hTH−1h)−1

]
(27)

where the off diagonal term mtn = −H−1hmn can also be written as mtn = −Mtha−1. More-
over, the first diagonal term Mt = (H − ha−1hT)−1 can be interpreted as the effective mass
matrix associated with the dynamics of the tangential velocity of a sliding contact if the
normal velocity is constrained.

Then, the quadratic expression for the projection of the generalized friction cone κg in
terms of the contact velocity changes δuc can be obtained by applying the variable transfor-
mation in (24) to (21), which yields

κg(δuc) = δuT
c Qδuc =

[
δut

δun

]T [
Qt Qtn

QT
tn Qn

][
δut

δun

]
= 0 (28)

where Q = McQμMc is the matrix of the quadratic equation of the cone, and its elements
are

Qt = Mt

(
I2 − μ2

a2
hhT

)
Mt, (29)

Qn = (
hTH−2h − μ2

)
m2

n, (30)

Qtn = (
Mt − μ2mnI2

)
mtn, (31)



Analysis of friction coupling and the Painlevé paradox 369

Fig. 2 The generalized friction cone of a rod in contact with the ground at θ = 45◦ for different values of μ

(left), and for the critical and jamming friction coefficients μcrit and μjam

where I2 is the 2×2 identity matrix. The conic surface κg in Eq. (28) lives in a 3-dimensional
space, regardless of the dimension of the velocity space n.

As in the classic cone κμ, the friction coefficient affects the geometry of the generalized
cone κg. For μ = 0, the cone degenerates into a line given by the parametrization

δuc(λn) = M−1
c

[
0
λn

]
dt = AM−1AT

nλn dt, (32)

which represents the space of constrained motion [36] associated with the unilateral contact
constraint and projected onto the contact space, also known as natural contact direction in
[37]. It can be interpreted as the direction in which the contact velocity changes due to the
normal contact force alone. In case of frictionless collisions, this direction is important be-
cause all non-impulsive forces are usually neglected and only the impulses of the normal
force are taken into account, and so the contact velocity only changes along this direction.
On the other hand, for μ → ∞, the cone degenerates into a plane given by the parametriza-
tion

δuc(λt) = M−1
c

[
λt

0

]
dt = AM−1AT

t λt dt. (33)

This plane contains the directions in which the contact velocity can change due to the friction
force. Note that this plane is not directly related to either the tangent plane or the natural
contact direction.

Figure 2 shows the proposed generalized friction cone for the so-called Painlevé example
of a single rod in contact with a plane.1 The shape of the cone is fully determined by the
friction coefficient μ and the orientation of the rod with respect to the plane (θ = 45◦ in this
case), since the rod is assumed to have a homogeneous mass distribution. This is because
the equation of the cone (28) only depends on the configuration and mass distribution of the
system.

1Interestingly, the original example used by Painlevé in [2] consists of a cylinder with one of its bases in
contact with a slope, which is sliding down the slope with a velocity parallel to the surface. Although the
mass distribution of the cylinder is different from the one of a rod, the same conclusions can be drown
assuming one single contact point at the edge of the cylinder base.
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In general, Q is a full-rank symmetric matrix that represents an elliptic cone κg without
any particular shape. Nevertheless, its geometry in some cases can be of interest and help to
better understand the dynamics of multibody systems with frictional contacts. For instance,
it is clear from (28) that the direction δut = 0 is located inside the cone if and only if Qn ≤ 0,
which, according to (30), it happens when the friction coefficient is greater than a critical
value

μ ≥ μcrit =
∥∥H−1h

∥∥ =
√

AnM−1AT
t

(
AtM−1AT

t

)−2
AtM−1AT

n (34)

where μcrit is the critical friction coefficient and depends on the configuration and mass
distribution of the system. Additionally, it plays an important role in single-point collisions
with friction, in which sliding cannot restart if μ ≥ μcrit [24, 38]. This fact is consistent with
the generalized cone proposed here, because in such a case, static friction is able to develop
a contact force that generates δut = 0, i.e., a force inside the cone (see Fig. 2).

Another interesting aspect of the generalized cone is its intersection with the plane
δun = 0, a degenerate conic described by the quadratic equation

δuT
t Qtδut = 0, (35)

which represents a point, the cone vertex, if Qt is positive definite (for small μ), or two
lines that intersect at the cone vertex if Qt is indefinite (for large μ). The threshold value
makes Qt be positive semi-definite (i.e., det Qt = 0) and, according to (29), this happens
when hTh = a2/μ2, which is the non-zero eigenvalue of the rank-1 matrix hhT. Therefore,
the intersection is different from a point if

μ ≥ μjam = a

‖h‖ = AnM−1AT
n√

AnM−1AT
t AtM−1AT

n

(36)

where μjam is the jamming friction coefficient, which depends on the configuration and mass
distribution of the system [26] (see Fig. 2). If the generalized friction cone dips below the
tangent plane, certain contact forces can generate a negative change in the contact normal
velocity, i.e., δun < 0. This can cause dynamic locking [9, 23, 24], which gives rise to
the Painlevé-like situations [9, 16, 28], where the dynamic equations of a rigid body with
Coulomb friction have no solution or even several possible solutions.

Similarly, if multiple contact points are present in the system, the equation of the gen-
eralized friction cone can still be derived for each contact point. If constraints are used to
model contact, the rest of contacts would affect the dynamics of the contact point of interest.
Therefore, the effective mass at the contact point under study in Eq. (24) would be different,
which would make the shape of the generalized friction cone change as well. Although we
focus our study on multibody systems with one single contact point, it can still give some
insight into the contact problem and friction coupling in more complex systems.

5 Solvability of dynamic formulations

Solvability of the dynamic formulation can be compromised in the presence of Coulomb
friction, as first showed by Painlevé [2]. Even for a system of one body sliding on a fixed
surface, it can be shown that the dynamic equations may have several solutions or none [28].
In this section, and following a general approach, different scenarios where the Coulomb
friction can lead to paradoxical situations are analyzed using the proposed representation of
the generalized friction cone.



Analysis of friction coupling and the Painlevé paradox 371

According to the Coulomb model (20), the direction of the kinetic friction force is deter-
mined by the sliding direction et, and so the contact force can be written as

λc =
[−μket

1

]
λn, (37)

which depends on the normal force component λn and lies on the friction cone κμ. The
problem arises when the contact force λc contributes to a negative change in the normal
velocity component, i.e., δun < 0, which may happen if part of the generalized friction cone
is found below the tangent plane [28]. The change in the normal velocity component is given
as function of the normal contact force λn as

δun = AnM−1ATλc dt = (
a − μkhTet

)
λn dt (38)

and it can be negative only if sliding happens in a direction et so that

eT
jamet >

μjam

μk
(39)

where

ejam = h
‖h‖ = AtM−1AT

n√
AnM−1AT

t AtM−1AT
n

, (40)

which defines the direction in the tangent plane coupled with the normal component.
If the sliding velocity is such that the condition in Eq. (39) is satisfied, the normal

force contributes to a negative change in the normal velocity, which causes dynamic jam-
ming [26–28]. The higher the coupling between normal and tangential components, the more
likely it is to occur. According to Eq. (36), the jamming friction coefficient μjam becomes
low when the coupling is high, and it tends to infinity when the normal and tangential com-
ponents are completely decoupled, i.e., h = 0. Moreover, the sliding direction defined by
ejam results in the most negative change of the normal velocity, which makes it the sliding
direction where jamming is more likely to happen.

Dynamic jamming may occur if sliding happens in a certain direction, and only if
μk > μjam. All these sliding directions define a continuous region in the tangent plane de-
fined by the condition in Eq. (39). Therefore, we can define a locking angle α that quantifies
the aperture angle of this region. Given that eT

jamet = cosβ ∈ [−1,+1], where β is the angle
between the sliding direction and the coupled direction ejam, the locking angle can be defined
as

α = 2 arccos

(
μjam

μk

)
, (41)

which only exists if μk > μjam. The maximum value for the locking angle is α = 180◦ (i.e.,
half the plane), which happens when the jamming friction coefficient becomes zero. This
value can never be reached in reality, but μjam can become small when the coupling between
normal and tangential directions is high.

Figure 3 shows the locking angle α for a single rod contacting on the ground at different
angles θ and different values of the friction coefficient μk. As it can be seen, the locking
angle only exists (i.e., α > 0) if the friction coefficient μk > 4

3 [15, 28]. A top view of the
generalized cone for a rod at 45◦ is shown on the right of Fig. 3 and, in this case, the locking
angle is α = 67.1◦. As discussed above, all the sliding directions in which jamming occurs
generate δun < 0, and so this is reflected on the part of the cone that dips below the tangent
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Fig. 3 Range of sliding velocities ut that contribute to a negative change of the normal contact velocity δun
for a single rod in contact with the ground at θ = 45◦ and μ = 2, with locking angle α = 67,1◦ (right), and
value of friction coefficient μ in terms of the orientation of the rod θ , for different values of locking angle α

(left)

Fig. 4 Possible solutions of a sliding rod at θ = 45◦ with a plane for μ = 1 (a), and μ = 2 (b, c); where
μjam = 1.67 in this configuration. The other external forces δu0 can push the contact together (top), and pull
it apart (bottom)

plane. Note that the aperture of the intersection of the cone with the plane is not equal to the
locking angle. This is because the locking angle α is associated with the sliding direction
defined by the sliding velocity ut, whereas the generalized friction cone is associated with
the change in contact velocity δuc. Nevertheless, the cone can only intersect with the plane
if μk > μjam, and in such a case the locking angle α > 0, and so dynamic jamming may
occur.

Let us consider the single-rod example in contact with a plane at θ = 45◦ in order to
assess and discuss the solvability of dynamic formulations by using the generalized fric-
tion cone. Figure 4 illustrates different possible situations in which the solution may be
compromised. For relatively small friction coefficients (μ < μjam), the generalized cone is
completely above the tangent plane, and so all possible contact forces contribute to a pos-
itive change in the normal velocity component, i.e., δun > 0. In such a case, the contact
detaches if the contribution of the other forces to the change in contact velocity (δu0) pulls
the contact apart (Fig. 4(a), top). Whereas if the contribution of the other forces pushes it
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together (Fig. 4(a), bottom), the contribution of the contact force to the change in contact
velocity δuc is able to balance the total change in velocity duc = δuc + δu0 and the contact
remains closed, i.e., dun = 0. Therefore, a unilateral constraint can be used to represent the
normal contact force in such cases, because the constraint equation u̇n ≥ 0 can be satisfied.

On the other hand, if the friction coefficient is high enough (μ > μjam), part of the cone
dips below the tangent plane, and some contact forces can contribute to a negative change
in the normal velocity component, i.e., δun < 0. Then, if the contribution of the other forces
to the change in the contact velocity (δu0) pushes the contact together, the total change in
the velocity duc = δuc + δu0 has a negative normal component, i.e., dun < 0 (Fig. 4(b), bot-
tom). Dynamic jamming occurs when the contact slides in a direction such that the jamming
condition in Eq. (39) is satisfied, and so the contact force contributes to a negative change
in the normal velocity. In such a case, the contact enters in a compression phase where the
normal velocity decreases (un < 0) and the contact interface starts compressing. The normal
velocity keeps decreasing until the contact stops sliding, instant at which the normal veloc-
ity is still negative. After the sliding phase, the compression phase continues but without
sliding (ut = 0) until the normal velocity becomes zero (un = 0) and the compression phase
finally ends. Part of the energy of the system is dissipated during the compression phase,
and the rest is restored back to the system during the restitution phase, at the end of which
the contact detaches with a positive normal velocity. This phenomenon is characterized by a
rapid increase in the contact forces, which tend to large values in a short period of time and
generate a sudden change in the velocities, like an impact without collision [24, 25].

To model this effect, and be able to solve the dynamic equation, it is possible to use
formulations based on contact forces defined via constitutive laws [30], or formulations
at the impulse–momentum level [29]. However, if a unilateral constraint u̇n ≥ 0 is used,
according to (37), the normal force would need to be negative (λn < 0) to be able to generate
δun ≥ 0 and keep the constraint (Fig. 4(c), bottom). This unrealistic solution results in a
contact force that develops negative dissipation, and so energy would be generated due to
friction. In this case, the dynamics formulation leads to a linear complementarity problem
(LCP) that has no solution, as shown in the next section.

Finally, in case the other forces contribute to a change in the contact velocity (δu0) such
that the contact is pulled apart, detachment should occur (Fig. 4(b), top). However, the con-
tact force contributes to a negative change in the normal velocity, i.e., δun < 0, it can balance
the other forces and can keep the body in contact with dun = 0 (Fig. 4(c), top). This unre-
alistic solution gives a false effect of cohesion, because the contact should detach, but the
contact force prevents it. To solve this paradoxical situation, Painlevé [3] proposed a prin-
ciple that prevents friction from keeping the contact closed.2 Essentially, it states that two
bodies should not interact (i.e., the contact should detach), if they would not interact under
the same conditions but in the absence of friction (μ = 0). Unfortunately, this principle is
only applicable to individual contact pairs and cannot be generalized to the multiple-point
case, where friction in the system can prevent some contact pairs from detaching.

6 Example of a multibody system with single contact

Cases where the dynamic equations may become ill-posed not only occur for very high
values of the friction coefficient, which can be considered unrealistic, as in the Painlevé

2The original text in French by Painlevé [3] can be translated as [28]: “Two rigid bodies, which under given
conditions would not produce any pressure on one another if they were ideally smooth, would likewise not
act on one another if they were rough.”
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Fig. 5 Articulated arm in contact with a plane (left) and the configuration A that corresponds to a local
minimum of the friction coefficient μjam (right). The system dimensions are L1 = L2 = 0.5 m, L3 = 0.1 m,
and h = 0.6 m, with a uniform linear mass density ρ = 2 kg/m

paradox. In this section, an example consisting of an articulated arm in contact with a plane
is used to show that it is possible to formulate the dynamic equations of a system with real-
istic parameters and have no solution. Additionally, the generalized friction cone proposed
in this paper helps to determine the cases where the solution is compromised.

The articulated arm in Fig. 5 consists of 4 bodies connected by revolute joints and it
is in contact with the fixed horizontal plane at point P. The configuration space can be
defined by the joint angles q = [θ1, θ2, θ3, ϕ]T, and its time derivatives can be used as
generalized velocities v = q̇, i.e., n = p = 4. Therefore, the mass matrix associated with
this parametrization is

M =

⎡

⎢
⎢
⎢⎢
⎣

ρL2
1

3 (L1 + 3L2 + 3L3)
ρL1L2

2 (L2 + 2L3) cos(θ1 − θ2)
ρL1L2

3
2 cos(θ1 − θ3) 0

ρL1L2
2 (L2 + 2L3) cos(θ1 − θ2)

ρL2
2

3 (L2 + 3L3)
ρL2L2

3
2 cos(θ2 − θ3) 0

ρL1L2
3

2 cos(θ1 − θ3)
ρL2L2

3
2 cos(θ2 − θ3)

ρL3
3

3 0
0 0 0 Iϕ

⎤

⎥
⎥
⎥⎥
⎦

(42)
where ρ is the linear mass density of the arm, which is considered the same for all the bodies,
and L1, L2, and L3 are the dimensions of the system (see Fig. 5). The diagonal element of
the mass matrix Iϕ represents the inertia of the arm associated with the coordinate ϕ, that is,

Iϕ = ρL3
1

3
cos2 θ1 + ρL3

2

12
cos2 θ2 + ρL2

(
L1 cos θ1 + L2

2
cos θ2

)2

+ ρL3
3

12
cos2 θ3 + ρL3

(
L1 cos θ1 + L2 cos θ2 + L3

2
cos θ3

)2

. (43)

The three components (r = 3) of the contact velocity at P can be written as

uc =
⎡

⎢
⎣

ut1

ut2

un

⎤

⎥
⎦ =

⎡

⎢
⎣

0 0 0 −x

−L1 sin θ1 −L2 sin θ2 −L3 sin θ3 0

−L1 cos θ1 −L2 cos θ2 −L3 cos θ3 0

⎤

⎥
⎦

⎡

⎢
⎢
⎣

θ̇1

θ̇2

θ̇3

ϕ̇

⎤

⎥
⎥
⎦ =

[
At

An

]
v (44)
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Fig. 6 Friction coefficient μjam
for the configuration space of the
articulated arm in contact with a
plane

where the coordinate x = L1 cos θ1 + L2 cos θ2 + L3 cos θ3 is used to simplify the expres-
sions, and defines the distance between point P and the axis of the vertical revolute joint
represented by ϕ (see Fig. 5). Additionally, if the constraint un = 0 is considered while
point P is in contact, the independent set of coordinates s = [x, θ3, ϕ]T can also be used.

To determine when the formulation can be solved, the limit values of the friction coef-
ficient determined by the generalized friction cone will be used. The value of the friction
coefficient μjam for different configurations of the arm are shown in Fig. 6, which only de-
pends on the coordinates x and θ3. The system shows two local minima, μA

jam = 0.421 and
μB

jam = 0.404, which are fairly realistic friction coefficients.
Here we analyze the local minimum A, where system configuration qA = [2.5◦, 106.2◦,

101.8◦, ϕ]T is independent of ϕ and corresponds to xA = 0.340 m. If the system is in this
configuration and the kinetic friction coefficient is large enough (μk > μjam), the contact
force may affect the contact velocity with δun < 0, which can lead to unrealistic solutions.
For instance, if we take a value of the friction coefficient larger that μA

jam = 0.421, such as
μk = 0.5, the locking angle is α = 65.3◦ according to Eq. (41). In such a case, the direction
in the tangent plane coupled with the normal force is ejam = [0,−1]T (see Fig. 5).

Let us consider the system at the aforementioned configuration qA, with a velocity such
that it satisfies the jamming condition in Eq. (39). If we choose the time derivatives of the
independent set of coordinates s to be ṡ = [ẋ, θ̇3, ϕ̇]T = [−1 m/s, 0, 1 rad/s]T, then the
contact point velocity is

uc =
⎡

⎣
ut1

ut2

un

⎤

⎦ =
⎡

⎣
−xϕ̇

ẋ

0

⎤

⎦ =
⎡

⎣
−0.340
−1.0

0

⎤

⎦ m/s (45)

where the sliding direction et = [−0.3219,−0.9468]T satisfies the locking condition in
Eq. (39). Therefore, only considering the effect of gravity, by (15) and (16) the total change
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in the contact velocity is

duc = δuc + δu0 =
⎡

⎣
0.1265
8.316

−0.3118

⎤

⎦λn dt +
⎡

⎣
1.0

−0.0169
−9.766

⎤

⎦dt, (46)

which depends on the normal force λn, and has dun < 0 for all λn ≥ 0.
If a kinematic constraint is used to model the contact, the following LCP problem can be

formulated while the contact is sliding

u̇n = −0.3118λn − 9.766

u̇n ≥ 0, λn ≥ 0, u̇nλn = 0

}

(47)

for which no solution exists. However, if the contact force is defined via a constitutive re-
lation, the dynamic equations can be integrated, and in such a case, the contact interface is
compressed because of δun < 0, until the contact stops sliding. It is also possible to formu-
late the dynamic equations at the impulse–momentum level.

On the other hand, under the same conditions as described above, if now a torque τ1 =
5 Nm is applied at the joint J1 in the negative direction of angle θ1, so that point P tends to
detach (see Fig. 5). Then, the total change in the contact velocity is

duc = δuc + δu0 =
⎡

⎣
0.1265
8.316

−0.3118

⎤

⎦λn dt +
⎡

⎣
1.0

−1.262
3.223

⎤

⎦dt, (48)

which yields the following LCP problem

u̇n = −0.3118λn + 3.223

u̇n ≥ 0, λn ≥ 0, u̇nλn = 0

}

(49)

which has two solutions: the expected solution with detachment (λn = 0 and u̇n =
3.223 m/s2), and the unrealistic solution without detachment (λn = 10.3 N and u̇n = 0).
Both are solutions of the mathematical problem. However, only one is consistent with the
physical problem at hand, and so additional information has to be provided to the solver in
order to determine which is the physically meaningful solution.

7 Conclusions

Dynamic formulations for multibody systems with contacts and Coulomb friction can have
no solution, or several, depending on the assumptions made. Namely, using kinematic con-
straints to model the contact when dynamic jamming (or locking) occurs may lead to unre-
alistic solutions of the dynamic equations. This can only be overcome by either using con-
stitutive relations, or formulating the dynamic equations at the impulse–momentum level
and integrate them with respect to the impulses within the contact interval, as in a collision.
By following a general approach, the formulation of a multibody system dynamics in the
contact space parametrized by the contact velocities was obtained. This formulation allows
defining the effect of the contact forces to the contact velocities, which helps us gain a deeper
insight into the system dynamics in the presence of friction.
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The projection of the generalized friction cone to the contact space was successfully used
to analyze friction coupling and the solvability of the system dynamic equations. The fact
that this is a 3-dimensional cone (parametrized by the 3 velocity components of a single
contact point) makes it easier to visualize than its n-dimensional counterpart. Moreover,
the quadratic equation of the proposed friction cone representation has been derived and
analyzed, which allows for determining the threshold value of the friction coefficient beyond
which the dynamic formulation may become ill-posed. It is possible to show that the so-
called Painlevé paradox is not an isolated phenomenon that only happens for very high
unrealistic values of the friction coefficient. Additionally, it is shown how multibody systems
with realistic parameters can also undergo similar situations due to friction coupling, in
which the solvability of the dynamic formulation may be compromised if contact is modeled
via unilateral constraints.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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