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A Unit-Consistent Error Measure
for Multibody Systems With
Unilateral Constraints
Modeling multibody systems subject to unilateral contacts and friction efficiently is chal-
lenging, and dynamic formulations based on the mixed linear complementarity problem
(MLCP) are commonly used for this purpose. The accuracy of the MLCP solution method
can be evaluated by determining the error introduced by it. In this paper, we find that
commonly used MLCP error measures suffer from unit inconsistency leading to the error
lacking any physical meaning. We propose a unit-consistent error measure, which com-
putes energy error components for each constraint dependent on the inverse effective
mass and compliance. It is shown by means of a simple example that the unit consistency
issue does not occur using this proposed error measure. Simulation results confirm that
the error decreases with convergence toward the solution. If a pivoting algorithm does
not find a solution of the MLCP due to an iteration limit, e.g., in real-time simulations,
choosing the result with the least error can reduce the risk of simulation instabilities and
deviation from the reference trajectory. [DOI: 10.1115/1.4042690]

1 Introduction

There are numerous issues that make multibody dynamics sim-
ulations with contacts and friction challenging. Many applications
in engineering and related fields impose strict requirements on the
computational time available for each time-step and on the accu-
racy of the simulation, such as in real-time simulations. Accurate
solutions and low computational time usually cannot be obtained
simultaneously. Contact in multibody systems can be modeled
through unilateral constraints. This often results in a dynamic for-
mulation that can mathematically be described as a linear comple-
mentarity problem (LCP) or mixed linear complementarity
problem (MLCP). There is a wide range of algorithms in the liter-
ature to solve LCPs and MLCPs, which can be classified into two
types: direct and iterative methods [1]. Generally, iterative solvers
are computationally more efficient than direct ones. Nevertheless,
only direct solvers are able to deliver the exact solution of the
MLCP given enough computational time. It is not an easy task to
choose the solver that best suits the problem at hand, especially
when there is a time constraint so that a solution with the desired
tolerance cannot be found. In this case, the simulation accuracy
can be increased significantly if we measure the error of all com-
puted solutions throughout the solver iterations and choose the
solution with the least error.

Simulations of mechanical systems are approximations of real-
ity that involve the creation of a model where some details are
always neglected. This can lead to errors in the system behavior
obtained through simulations compared to the real mechanical
system. We call the error introduced by modeling approximations
the modeling error. In simulations, continuous time is approxi-
mated by discrete time intervals. Then, the system configuration,
motion, and reaction forces are evaluated at a discrete time. This
leads to an error due to time discretization, termed discretization
error. Models subject to unilaterality can lead to an MLCP formu-
lation, which gives rise to an error introduced by the MLCP
solver, the solver error. In this paper, we do not intend to measure

the modeling or discretization error of the simulation but the
solver error only.

In multibody dynamics benchmarking, Gonz�alez et al. [2]
define the solution accuracy as the relative position error between
the given reference solution and the computed solution at a dis-
crete point in time. The overall simulation error is obtained by
aggregation of the position errors over the simulation time.
Gonz�alez et al. [3] extend this approach by introducing an energy
error measure for conservative systems to avoid large position
errors in case of a small phase error. However, this energy error is
not applicable to nonconservative systems since the mechanical
energy at the beginning of the simulation is used as the Ref. [3].
In robotics, Erez et al. [4] compare the numerical integration
errors of dynamics engines of different simulation platforms by
monitoring the deviation of the system configuration from a refer-
ence trajectory. This reference trajectory is obtained by reducing
the integration time-step size and therefore the integration error.
All error measures and metrics in the aforementioned papers
[2–4] require a reference solution. This limits the possible applica-
tions significantly since such reference solutions are not always
trivial to obtain and certainly cannot be computed in real time for
interactive simulations.

In finite element analysis, the literature on a posteriori error
estimation is vast. A posteriori error estimation uses the computed
solution itself to assess the simulation accuracy [5]. Thus, no ref-
erence solution is required. Babu�ska and Rheinboldt [6,7] propose
error estimation techniques, which approximate the energy norm
of each finite element. These are commonly used for adaptive
meshing techniques [8]. Babu�ska et al. [9] validate a posteriori
error estimation in terms of performance and robustness. A sum-
mary of a posteriori error estimation can be found in Refs. [5] and
[10]. We refer the reader to Ref. [11] for an introduction to finite
element methods including error estimation.

The mathematics literature contains numerous papers and
books about the theory of error bounds of complementarity prob-
lems (CP), i.e., the general problem formulation containing the
LCP, MLCP, and nonlinear complementarity problem. Pang
[12,13] defines the natural residual as the componentwise mini-
mum between the CP solution vector and the slack vector, which
are supposed to be complementarity to each other. This residual
can be used to measure the closeness of the computed result to
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being a solution of the CP. Mangasarian and Shiau [14] propose
another natural residual specifically for cases where Pang’s resid-
ual function fails to bound the errors. Their natural residual defini-
tion has been replaced by an improved error bound consisting of
two natural residuals in combination [15]. Merit functions for the
CP are used to design globally convergent solution algorithms and
serve also as error bounds. Fukushima [16] discusses several merit
functions one of which is the Fischer-Burmeister function. This
function is defined by the componentwise difference between the
‘2-norm and the ‘1-norm of two components of the solution and
slack vector. The Fischer-Burmeister merit function is commonly
used in iterative algorithms to capture the error in rigid body sim-
ulations [17–19]. Lu and Trinkle [20] measure the error in a
potential solution given by the algorithm by using the
Chen–Chen–Kanzow reformulation function, which also depends
on the Fischer-Burmeister function. Lacoursière et al. [21] intro-
duced multiple quality metrics, which do not only measure the
MLCP solver error but also the contact penetration error as well
as the error in the friction force magnitude and alignment with the
sliding direction. It is not in the scope of this present paper to
determine and evaluate the error in the dynamic formulation, the
objective is to measure the MLCP solver error only.

The great advantage of the aforementioned residual and merit
functions for the CP is that the non-negativity and complementar-
ity conditions are used to determine the error in the computed
result. Thus, no reference solution is required. Furthermore, the
error can be computed relatively inexpensively in every algorithm
iteration. This is advantageous because we can keep track of the
solver error throughout the iterations. Then, the intermediate solu-
tion with the least error can be chosen in case the solver does not
terminate due to an iteration limit. However, these error functions
have a major drawback if used for mechanical problems. They do
not take the physical nature of the solution vector (forces or
impulses) and the slack vector (accelerations or velocities) into
consideration. Thus, the computed errors are unit inconsistent and
have no physical meaning.

In this paper, we introduce two commonly used error measures
based on the natural residual [13] and the Fischer-Burmeister
function [16]. We show that these approaches do not take the
nature of the model into account and can suffer from physical
inconsistency. In other words, the units of the physical quantities
these error measures are based on are ignored during their compu-
tation so that the resultant error does not represent any physical
quantity. Furthermore, we present a unit-consistent energy error
measure for MLCP solvers that does not require any reference
solution and can be efficiently computed for every solver iteration
in order to improve simulation accuracy. Finally, we apply this
proposed error measure to monitor the quality of the intermediate
results in an engineering simulation at each iteration of a direct
solver and choose the best solution if the algorithm does not
terminate.

2 Multibody Dynamics With Contact

Let us consider a multibody system with the generalized veloc-
ities v 2 R6m for m rigid bodies and the transformation Jv¼w
that defines the constraint subspace where w 2 Rn represents the
velocities in that subspace and J 2 Rn�6m is the constraint Jaco-
bian. The dynamic equations using a finite difference approxima-
tion for the generalized accelerations _v � ððvþ � vÞ=hÞ and
constraint regularization can be written as [22]

M �JT

J C

" #
vþ

hkþ

" #
þ

�p

h�1U

" #
¼

0

w

" #
(1)

where h is the time-step size, v
þ are the unknown velocities at the

end of the step, v are the known velocities at the beginning of the
step, M 2 R6m�6m is the mass matrix, and p ¼Mvþ hfa 2 Rm

combines the momentum and impulse dependent on the

generalized applied forces fa. The limits on the constraint reac-
tions kþ 2 Rn are specified by the nature of the constraint, e.g.,
kþn � 0 for a normal contact force, and kþt 2 ½�lkn;þlkn� for a
friction force component if the box friction approximation [22,23]
is used, where kn can be an estimate of the normal force from the
previous time-step. This removes the dependency between normal
and friction forces of the same time-step. In the box friction
model, the friction cone is approximated as a polyhedral cone
using one normal and two friction directions. The objective of this
present paper is not to develop an accurate friction formulation
but to measure the error in a given model formulated as an
MLCP. The constraints can be regularized through representation
of the reaction forces by constitutive relations in implicit form,
i.e., kþi ¼ �ki/

þ
i , where ki is the constraint stiffness and /þi is the

constraint violation at the end of the time-step. This introduces the
compliance matrix C ¼ diagfð1=ðk1h2ÞÞ;…; ð1=ðknh2ÞÞg 2 Rn�n

and the constraint violation vector U ¼ ½/1…/n�T 2 Rn. Note
that the constraint violations of the next time-step are approxi-
mated via a finite difference so that the constraint reactions are
defined in terms of the unknown velocities. This makes the con-
straint forces implicit and adds damping to the system, which
increases the stability of the formulation.

2.1 Mixed Linear Complementarity Problem. The general
form of the MLCP that needs to be solved at each step is

Axþ b ¼ w (2)

0 � u� x?w� � 0 (3)

0 � x� l?wþ � 0 (4)

where A ¼ JM�1JT þ C is the lead matrix, b ¼ JM�1pþ
ð1=hÞU is called parameter vector, and the variables x ¼ hkþ 2
½l; u� are the constraint impulses subject to lower and upper
bounds l and u. The non-negative components of the constraint-
space velocity (also known as slack variables) w ¼ wþ � w� are
complementary to the saturation of the lower and upper bounds,
denoted by the operator ?. Therefore, the slack variable is posi-
tive (wþ,i> 0) if the main variable xi is at the lower bound (xi¼ li).
Likewise, the slack variable is negative (w–,i> 0) if the main vari-
able xi is at the upper bound (xi¼ ui).

2.2 Solver Algorithms. There are two main types of algo-
rithms for solving an MLCP: direct and iterative methods [1].
Direct methods, also known as pivoting methods, try to determine
the set of variables that are at the upper or lower bound, or within
the bounds. They start with an initial guess for these index sets in
order to solve for the unknown variables. If the guess does not
lead to a solution of the MLCP, the index sets are modified by sys-
tematically swapping variables from one set to another until a
solution is reached. Unfortunately, there is no guarantee that the
result in an iteration is closer to the solution than the previous
result.

In contrast to direct methods, iterative methods do not make
assumptions on index sets nor solve directly for the unknown vari-
ables. Instead, convergence is reached by improving the solution
in every iteration. Then, each iterate is closer to the solution
than the previous one if the solver is convergent for the problem
at hand. In order to solve the MLCP, direct and iterative solution
algorithms perform a series of iterations and compute intermediate
solutions, which satisfy Eq. (2). Therefore, the solver error
occurs only in the conditions in Eqs. (3) and (4). Note that there
are also methods, which do not satisfy Eq. (2) for intermediate
solutions, e.g., Lemke’s algorithm [1]. For these methods, the
error measures presented in this paper cannot be used to determine
the closeness of intermediate solutions of being a solution of the
MLCP.
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3 Existing Error Measures

In Secs. 3.1 and 3.2, we present two functions that can be used
to measure the solver error per constraint based on the MLCP
solution x and slack variable w. If Eq. (2) is satisfied, the variable
xi represents the constraint reaction impulse, and its slack variable
wi represents the constraint velocity. However, for an intermediate
solution before the algorithm converges, the feasibility of the
impulses (xi � [li, ui]) and the constraint velocities
(wþ;i � 0; w�;i � 0) as well as their complementarity
(wþ;iðxi � liÞ ¼ 0; w�;iðui � xiÞ ¼ 0) may not be guaranteed.

3.1 Fischer-Burmeister Error Function. For the MLCP in
Eqs. (2)–(4), two Fischer-Burmeister error functions associated
with the upper and lower bounds can be introduced per constraint
i [16,24]

wFB;u;i ¼ ðui � xiÞ þ w�;i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðui � xiÞ2 þ w2

�;i

q
wFB;l;i ¼ ðxi � liÞ þ wþ;i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � liÞ2 þ w2

þ;i

q (5)

We take the maximum of the absolute values resulting from Eq.
(5) to obtain one error value for constraint i

dwFB;i ¼ maxðjwFB;l;ij; jwFB;u;ijÞ (6)

Figure 1 visualizes isoline plots for the Fischer-Burmeister tech-
nique in Eq. (6) for contact and friction. Given dwFB,i, we can
compute an error value for the entire system of equations, called
system error. The ‘1-norm of the component vector dwFB ¼
½dwFB;1…dwFB;n�

T
can be used to define the system error as

dwFB ¼ jjdwFBjj1 ¼
Xn

i¼1

jdwFB;ij (7)

3.2 Natural Residual. Similar to the approach for the
Fischer-Burmeister function, we can introduce two natural resid-
uals associated with the upper and lower bounds per constraint i
for an MLCP [12,13]

wres;u;i ¼ minðui � xi;w�;iÞ
wres;l;i ¼ minðxi � li;wþ;iÞ

(8)

where the arguments in the minimum function represent the varia-
bles in the conditions in Eqs. (3) and (4). We define the error of
constraint i as the maximum of the absolute values of the two
functions

dwres;i ¼ maxðjwres;u;ij; jwres;l;ijÞ (9)

Figure 2 shows the isoline plots for contact and friction. The sys-
tem error can be defined using the ‘1-norm

dwres ¼ jjdwresjj1 ¼
Xn

i¼1

jdwres;ij (10)

where dwres ¼ ½dwres;1…dwres;n�
T

is the component vector com-
posed of the errors for all constraints in the system.

3.3 Unit Consistency Issues. The two error measures pre-
sented above are commonly used in simulation of multibody sys-
tems with contact to estimate the accuracy of the solver algorithm
[24,25]. However, these error measures have a significant short-
coming, which is rarely discussed. The different physical nature
of the constraint impulses x and the constraint-space velocities w
is not taken into account. This can lead to unit inconsistencies in
the Fischer-Burmeister function. For example, if ui� xi and w–,i

are simultaneously nonzero, we add impulses expressed in N�s to
velocities expressed in m/s, which leads to a sum in Eq. (5) with-
out any physical meaning. Unit inconsistencies in the ‘1-norm of
the natural residual can also occur if the components of dwres con-
tain variables of mixed physical quantities, e.g., impulses
expressed in N�s and velocities expressed in m/s. Furthermore,
another type of unit inconsistency can occur when the system
contains constraints representing restrictions on both, linear and
angular motion. Then, w is composed of a mix of point velocities
in m/s and angular velocities in s�1. There is no clear physical
meaning of the ‘1-norm of dwres that mixes impulses, point veloc-
ities and angular velocities. Even if all error is exclusively arising
in the impulses, i.e., the components of dwres carry exclusively
impulse units, the effect of such impulse error on the system
motion is dependent on the mass of the constrained bodies. For
example, a relatively small impulse error may have a more signifi-
cant impact on the motion of a light body than a relatively large
impulse error on the motion of a heavy body.

Fig. 1 Fischer-Burmeister error isolines for contact (left, li 5 0 N � s; ui 5 1‘ N � s) and friction (right,
li 5 21 N � s; ui 5 11 N � s). The error is zero on the thick solid line representing the set of valid solutions.
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4 Unit-Consistent Error Measure

In this section, we present a novel error measure that defines
the solver error as a function of the MLCP solution vector x and
the slack vector w. This error measure is unit consistent in all the
critical scenarios outlined in Sec. 3.3. Unit consistency is guaran-
teed through multiplication with a mass or inertia quantity, an
approximation of the effective mass or inertia associated with
each constraint. Then, we obtain constraint error components
expressed in energy units, which allows us to easily combine and
compare them.

4.1 Effective Mass. We consider a system of m rigid bodies
connected by n bilateral and unilateral constraints. The system
mass matrix is given by M 2 R6m�6m and the system constraint
Jacobian by J 2 Rn�6m where the Jacobian row Ji 2 R1�6m corre-
sponds to constraint i. Under the assumption that all unilateral
constraints are active, i.e., w¼ 0, the effective mass element �meff;i

associated with constraint i in the constrained multibody system
can be defined as [26,27]

�meff;i ¼ fðJM�1JTÞ�1gii (11)

where {�}ii is the ith diagonal element of the matrix in the curly
brackets. For large-scale systems, it is very expensive to compute
the effective mass matrix, which is the inverse of JM�1JT. How-
ever, if JM�1JT is diagonally dominant, i.e., fJM�1JTgii >P

i6¼j jfJM�1JTgijj, the effective mass element �meff;i can be
approximated as

meff;i ¼ JM�1JTð Þii
� ��1 ¼ 1

JiM
�1JT

i

(12)

The less coupling between the constraints in the multibody sys-
tem, the better is this approximation. The approximated effective
mass element meff,i is equivalent to the effective mass element
�meff;i in the case where the system fully decouples, and it is
smaller otherwise, i.e., meff;i � �meff;i (see the Appendix). Thus,
only the mass and inertia effects of directly adjacent bodies are
taken into consideration and no other constraints between these
bodies are regarded. For a long chain of bodies connected by
spherical joints, the approximated effective mass of a constraint
only contains contributions of the two bodies, which are linked to
each other by constraint i. For two bodies connected by multiple
constraints, e.g., a cube in contact with a plane, the approximated

effective mass of constraint 1 does not receive any contribution of
constraint 2 even if the same bodies are involved. This approxima-
tion of the effective mass element has been made to keep the com-
putational cost low. Therefore, the solver error can be computed
for every iteration without significant impact on the solver
performance.

The MLCP lead matrix A in Eq. (2) is defined as the sum of the
inverse effective mass matrix JM�1JT and the diagonal regulari-
zation matrix C. Then, the diagonal elements aii of A can be writ-
ten as

aii ¼
1

meff;i
þ ci (13)

where element ci is the diagonal element of C and represents the
compliance of constraint i, which is usually small and it can also
be set to zero if the constraints are not redundant. The element aii

combines the inverse of the approximated effective mass with the
constraint compliance. It carries inverse mass units kg�1 if the
translational motion is constrained or inverse inertia units
(kg m2)�1 if the angular motion is restricted by constraint i. In the
following sections, aii will simply be referred to as inverse effec-
tive mass element, which is given without any additional compu-
tations as the diagonal element of A.

4.2 Energy Error Measure. Given a solution x of the MLCP
problem in Eq. (2), the ith component can be decomposed into

xi ¼ x0;i þ dxu;i � dxl;i (14)

where the feasible component x0,i � [li, ui]. The other components
are defined as

dxu;i ¼ maxðxi � ui; 0Þ
dxl;i ¼ maxðli � xi; 0Þ

(15)

which quantify the violation of the upper and lower bounds,
respectively. On the other hand, the slack variable w¼Axþ b is
decomposed into the two non-negative components as

wi ¼ wþ;i � w�;i (16)

where wþ,i � 0 and w–,i � 0. Furthermore, we define the satura-
tion of the upper and lower bound as

Fig. 2 Natural residual error isolines for contact (left, li 5 0 N � s; ui 5 1‘ N � s) and friction (right,
li 5 21 N � s; ui 5 11 N � s). The error is zero on the thick solid line representing the set of valid solutions.
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ru;i ¼ ui � ðx0;i � dxl;iÞ
rl;i ¼ ðx0;i þ dxu;iÞ � li

(17)

The decomposition of xi and wi is illustrated for friction in Fig. 3.
We define the upper impulse energy error dexu ;i, the lower

impulse energy error dexl;i, the positive velocity energy error
dewþ;i, and the negative velocity energy error dew�;i as

dexu ;i ¼
1

2
aiidx2

u;i (18)

dexl;i ¼
1

2
aiidx2

l;i (19)

dewþ;i ¼ min
1

2aii
w2
þ;i;

1

2
aiir

2
l;i

� �
(20)

dew�;i ¼ min
1

2aii
w2
�;i;

1

2
aiir

2
u;i

� �
(21)

Then, we define the energy error for constraint i as the maxi-
mum of the four non-negative energy error components
dexu ;i; dexl;i; dewþ;i, and dew�;i

dei ¼ maxðdexu ;i; dexl;i; dewþ;i; dew�;iÞ (22)

Equation (22) is always unit consistent since all components in
the maximum function are expressed in Joules.

Figure 4 illustrates isoline plots of the unit-consistent energy
error dei in the x–w-plane. The thick solid line represents the set
of valid solution that have zero error dei¼ 0, i.e., they satisfy Eqs.
(3) and (4). The thin solid lines correspond to sets of solutions
with the same error dei. The dashed lines are parallel to the line
described by the decoupled constraint equation aiixiþ bi¼wi. The
slope of these lines equals the inverse effective mass element aii.
The error increases quadratically along these lines.

Finally, the total error of the system can be defined as the ‘1-
norm

de ¼ jjdejj1 ¼
Xk

i¼1

jdeij (23)

given a component vector de ¼ ½de1…den�T composed of the con-
straint errors dei. We choose the ‘1-norm to simply add up all
energy constraint errors. The units are always consistent since all
components of de carry energy units.

Note that this unit-consistent error measure is a problem scaling
approach where the inverse effective mass elements aii are the
scaling factor required to obtain unit consistency of all elements
of de. It is possible to select different mass or length scaling fac-
tors [28] and create error definitions based on different physical
quantities, such as momentum or velocity.

4.2.1 Computational Complexity. This section outlines the
computational complexity of the error measure with respect to the
overall complexity of a direct solver, for which the proposed error
measure was originally developed. For direct solvers, the MLCP
lead matrix A is explicitly formed so that its diagonal elements aii

are known [29]. Furthermore, all impulse and velocity compo-
nents xi and wi are always computed since the algorithm must ver-
ify if they satisfy the bounds. Then, the components dxu,i, dxl,i,
wþ,i, and w–,i are deduced using minimum and maximum func-
tions. The computations of dexu ;i; dexl;i; dewþ;i; dew�;i, and dei

require a combination of floating point operations and minimum
as well as maximum function. This has to be done for n variables
per iteration and all variables have to be added together, which
leads to overall computational complexity of OðnÞ. A direct solver
requires a matrix factorization of complexity Oðn3Þ per iteration,

Fig. 3 Decomposition of the constraint impulse xi and velocity
wi into upper impulse error dxu, lower impulse error dxl, positive
sliding velocity w1, negative sliding velocity w–, upper bound
saturation ru, and lower bound saturation rl

Fig. 4 Energy error isolines for a contact constraint with li 5 0 and ui 5 1‘ (left) and a friction constraint with
li 5 21 and ui 5 11 (right) expressed in Joules. Note that the error is zero on the thick solid line and increases
quadratically along the dashed lines.
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which can be sped up to Oðbn2Þ for banded matrices with band-
width b. Thus, the cost of the error measure computation is negli-
gible for large problems.

4.2.2 Interpretation. There are two sources of error: velocity
error and impulse error. We consider a single frictionless point
mass mi on the ground with an external force of magnitude fa< 0
applied to it (see Figs. 5(a) and 5(b)). The dynamic equations for
the unilateral constraint with the ground formulated for each time-
step can be written in LCP form (see Eqs. (2)–(4)) as

aiixi þ bi ¼
1

mi
xi þ

hfa
mi
¼ wi

wi � 0; xi � 0; wixi ¼ 0

(24)

where the time-step h is constant. The contact impulse xi and the
contact normal velocity wi must be non-negative and complemen-
tary. A direct method assumes one variable to be zero and then
computes the solution for the other variable. Under the assump-
tion that the normal velocity is zero wi¼ 0, the contact impulse is
positive xi ¼ �ðbi=aiiÞ ¼ �hfa > 0 so that the energy error is
zero dei¼ 0 (see Fig. 5(a)). Assuming that the contact impulse is
zero xi¼ 0, the normal velocity is negative
wi ¼ bi ¼ ðhfa=miÞ < 0, which leads to a nonzero energy error
dei ¼ ð1=ð2aiiÞÞw2

i > 0 (see Fig. 5(b)). This can be interpreted as
the kinetic energy that is generated due to the constraint violation.
In Figs. 5(c) and 5(d), we invert the direction of the external force,
i.e., fa> 0. Then, we obtain a negative impulse xi< 0 under the
assumption that the contact is closed wi¼ 0 (see Fig. 5(c)). This
leads to an energy error dei ¼ ð1=2Þaiix

2
i , which is equivalent to

the kinetic energy that would be released if the impulse was not
applied. The error is zero de¼ 0 if we assume detaching contact
xi¼ 0 and wi> 0 (see Fig. 5(d)).

4.2.3 Discussion. We consider the motion of a single point
mass in positive tangential direction to the ground in Fig. 6.
According to the box friction model, this sliding motion is valid
only if the friction impulse xi is equal to the lower bound li (see
Fig. 6(a)). Let us assume that wþ,i> 0 and rl,i> 0 (see Fig. 6(b)),
then we need to determine whether the friction impulse or the slid-
ing velocity is incorrect, i.e., if the point mass is supposed to stick
(wþ,i¼ 0) or slide (rl,i¼ 0). If the positive sliding velocity is large
wþ,i	 0 and the impulse is close to the lower bound (rl,i is small),
it is more likely that the sliding velocity is correct and the impulse
should be equal to the lower bound, i.e., rl,i¼ 0. Therefore, a slid-
ing velocity wþ,i> 0 would not be considered as an error. Then, the
overall constraint error is defined to be the minimum of dewþ;i ¼
minðð1=ð2aiiÞÞw2

þ;i; ð1=2Þaiir2
l;iÞ ¼ ð1=2Þaiir2

l;i > 0 (see Eq. (20)).
To illustrate why the error is measured in this way, we can con-

sider a straight line parallel to the red dashed line in Fig. 4 (equa-
tion line), which contains the point (xi, wi) in the x–w-plane. The
slope of this line is equal to aii, and it contains all the solutions
that would result from changing the impulse xi and the velocity wi

according to the relation wi¼ aiixiþ bi. Therefore, from the cur-
rent solution point, we can adjust the impulse until a solution with
no error is reached, i.e., a valid solution on the solid blue line
(solution line). One of the two arguments of the minimum func-
tion in Eq. (20) becomes zero at the intersection point between the
solution line and the equation line. The error component of this
argument (wþ,i or rl,i) is assumed to be incorrect and, thus, deter-
mines the energy error. For the point mass example above, this
component is the lower-bound saturation rl,i.

5 Results

In this section, we present an example for which the existing
error measures in Eqs. (7) and (10) are unit inconsistent, whereas
the novel energy error measure in Eq. (23) obtains unit-consistent

Fig. 5 Single point mass in contact with the ground. There is no energy error for (a) and (d).
The energy error for (b) can be interpreted as the kinetic energy generated due to the con-
straint violation. The energy error in (c) equals the kinetic energy that would be released if the
impulse was not applied.

Fig. 6 Single point mass sliding on the ground. There is no error when (a)
the friction impulse is equal to the lower bound xi 5 li. The error is given by
the minimum function in Eq. (20) if rl,i > 0 and w1,i > 0, i.e., (b) due to the fric-
tion impulse saturation rl,i.
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results. Furthermore, we test the existing error measures and the
novel energy error measure for an iterative solver, which com-
putes solutions of MLCPs obtained from a brick wall simulation.
We show that the solver error decreases continuously for the novel
measure as expected for an iterative solver. Finally, the proposed
energy error measure is used in an interactive forklift simulation
for the purpose of monitoring intermediate solutions in every iter-
ation of a direct method. We choose the best solution if the
method does not converge due to an iteration limit. We show that
the usage of an error measure reduces simulation instabilities and
deviation from the reference trajectories for direct solvers impos-
ing a limit of the number of iterations.

5.1 Case Study: Rigid Rod on a Plane. We illustrate the
unit consistency issue of the existing error measure using a discrete
time, frictionless model of a rigid rod, shown in Fig. 7, which is ini-
tially at rest, i.e., v¼ 0. An external moment Tx¼ 20 Nm is applied
about the center of mass G of the m¼ 4 kg heavy rod, which con-
tacts the ground in two points at both ends of the rod under the
effect of gravity g ¼ 9:81 m=s2. The diameter of the rod is negligi-
ble with respect to its length of l¼ 1.5 m. The constraint Jacobian
J, the mass matrix M, and applied forces fa are determined to be

J ¼
0 0 1 � l

2
0 0

0 0 1
l

2
0 0

2
664

3
775

M ¼ diag mE3�3;
1

12
ml2; Iy;

1

12
ml2

� �
fa ¼ 0 0 �mg Tx 0 0

	 
T
(25)

where E3� 3 is the 3� 3 identity matrix and Iy is small. We assume
that the constraints are to be enforced exactly, i.e., there is no con-
straint relaxation. Given the time-step size h¼ 0.01 s, we formulate
an LCP to determine the constraint impulses x¼ [x1, x2]T and
constraint-space velocities w¼ [w1,w2]T at the two contact points

4

m
� 2

m

� 2

m

4

m
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66664

3
77775
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x2

2
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3
5þ
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l

2
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� �
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666664
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|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

x1

x2

" #
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x

þ
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s

2
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3
75

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
b

¼
w1

w2

" #
|fflffl{zfflffl}

w

0 � x?w � 0 (26)

where vz ¼ 0 m=s and xx ¼ 0 s�1.

We consider a direct method starting with the initial guess
x1¼ 0 and w2¼ 0. Then, it follows directly from Eq. (26) that
x2¼�0.1019 N�s and w1 ¼ �0:2981 m=s, both of which violate
the non-negativity conditions. Physically, x2 can be interpreted as
an adhesive impulse acting in negative z-direction to prevent the
contact at point 2 from detaching. This leads to a negative value
for w1, which is the resulting velocity of the rod at contact point 1
so that the rod would penetrate the ground after time integration.

The novel unit-consistent error measure can also be applied to
an LCP since this is a special case of the MLCP where l ¼ 0 and
u ! 1. Measuring the solver error for this scenario using the
Fischer-Burmeister function in Eq. (7) results in dwFB¼
jdwFB;1jþjdwFB;2j¼ jw1jþjx2j¼0:2981m=sþ0:1019N �s, where
dwFB,1 and dwFB,2 are computed using Eqs. (5) and (6). We can
see that dwFB has no physical meaning because velocity and
impulse components simply cannot be added. It is apparent that
this unit inconsistency also occurs if the solver error is determined
using the natural residual. The unit-consistent energy error mea-
sure overcomes this issue through calculation of the energy error
components equivalent to the error in w1 and x2. The constraint
errors measure the energy error associated with a constraint and
can be determined to be de1¼ð1=2a11Þw2

�;1¼4:44�10�2 J and
de2¼ð1=2Þa22dx2

l;2¼5:2�10�3 J using Eqs. (18)–(22). Now, we
can compute a unit-consistent system error de¼de1þde2¼
4:96�10�2 J using Eq. (23).

5.1.1 Discussion. All the above computations were done
using the approximation of the effective mass elements (see Sec.
4.1). The effective mass matrix for the system in Fig. 7 is

A�1 ¼ ðJM�1JTÞ�1 ¼ �meff;1 �meff;12

�meff;21 �meff;2

� 
¼ 1:33 kg 0:66 kg

0:66 kg 1:33 kg

� 
(27)

Fig. 7 Rigid rod contacting the ground in two points in its initial configuration before time integration (left) and
after time integration using an incorrect solution for the contact impulse x (right)

Fig. 8 Brick wall example
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Thus, the approximation of the effective mass meff,i underesti-
mates the effective mass of the constrained system �meff;i.
The velocity-based energy errors per constraint are
d�e1 ¼ ð1=2Þ �meff;1w2

�;1 ¼ 5:91� 10�2 J > de1, i.e., the error is
underestimated using the approximated effective mass meff,i. The
constraint energy error due to an incorrect impulse
is d�e2 ¼ ð1=ð2 �meff;2ÞÞdx2

l;2 ¼ 3:9� 10�3 J < de2; thus, it is over-
estimated using the approximated effective mass meff,i. The

unit-consistent system error is then d�e ¼ d�e1 þ d�e2 ¼ 6:30
�10�2 J > de.

We consider the symmetric positive definite LCP lead matrix
A ¼ JM�1JT þ C where C¼ 0 in the example above. It is proven
in the Appendix that the diagonal elements of the inverse matrix
is greater than or equal to the inverse of the diagonal
ðA�1Þii � ð1=AiiÞ. Strict equality holds if and only if A is diago-
nal, i.e., the constraints in the systems and completely decoupled.

Fig. 9 Brick wall example in Fig. 8 solved by PGS, on the left solid lines illustrate the average
errors and the dashed lines the upper and lower error limit given by the average plus or minus
the standard deviation, on the right each line represents the iteration–error curve for one time-
step
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Hence, the approximated effective mass element meff,i introduced
in Sec. 4.1 never overestimates the effective mass element �meff;i.
If the constraints are coupled, as in Fig. 7, velocity-based energy
errors are always underestimated using the approximated effective
mass, whereas impulse-based energy errors are always overesti-
mated. If there are predominantly impulse-based errors, the total
system error will be overestimated; if there are predominantly
velocity-based errors, it will be underestimated. Thus, it cannot be
generally predicted whether the approximation overestimates or
underestimates the total system energy error.

5.2 Discrete Simulation Steps: Brick Wall. We test the
novel energy error measure for the example in Fig. 8, which con-
sists of a stack of 30 boxes laid out in a brick wall pattern. The
brick wall is 12 bricks tall, and we alternate between rows of two
or three bricks in width. Furthermore, there are small lateral gaps
between two adjacent bricks. We use a direct solver to accurately
simulate the wall behavior and store an MLCP for each of the 500
time steps. Then, the projected Gauss–Seidel (PGS) iterative
method is used to find a solution of all of these MLCPs with 100

solver iterations for each time-step. Iterative solvers are known to
converge to a solution by continuously improving the solution
with every iteration. Hence, we expect the error to decrease with
the number of iterations. Note that it is possible that iterative solv-
ers do not converge to the solution. This depends on the physical
problem and the mathematical properties of the MLCP lead
matrix. Convergence is guaranteed only if matrix A is diagonally
dominant.

Figure 9 shows the results for the solver error per iteration
defined by the Fischer-Burmeister error measure dwFB, the natural
residual error measure dwres, and the proposed energy error mea-
sure de. Only the latter treats physical units consistently. The set
of results contains the solver error per iteration for �T ¼ 500 time
steps for which we compute the average error and the standard
deviation. The average energy error per time-step le is defined as

le ¼
1
�T

X�T

k¼1

de tkð Þ

0
@

1
A (28)

where de(tk) is the energy error at time tk, and the standard devia-
tion of the energy error re is given as

re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�T � 1

X�T

k¼1

de tkð Þ � le

� �2

0
@

1
A

vuuut (29)

The average and standard deviation for the Fischer-Burmeister
and natural residual solver errors can also be calculated using this
approach by replacing de(tk) by the respective error dwFB(tk) and
dwres(tk) at time tk.

The three plots on the right of Fig. 9 show the iteration–error
curves for all 500 time steps. The three plots on the left illustrate
the average values of the solver error lFB, lres, and le as well as
the upper and lower error limits given by the average plus or
minus the standard deviation of the solver error lFB6rFB,
lres6rres, and le6re. The latter visualizes the amount of variation
of the solver errors over the time steps. The small vertical gap
between the averages lFB, lres, as well as le and the upper and
lower limits lFB6rFB, lres6rres, as well as le6re indicates that

Fig. 10 Forklift driving example

Fig. 11 No error correction, i.e., keeping the last incorrect algorithm solution, leads to a significant offset from
the reference trajectory (left). The proposed energy error is closest to the reference trajectory (right).
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the variation of the solver errors is relatively small for the differ-
ent time steps as expected for a motionless example. For the error
curves of the Fischer-Burmeister and the natural residual error
measures, the solver error increases in the first ten iterations,
reaches a maximum, and then decreases exponentially with the
iteration count. The error curves for the energy error measure do
not show any error increase in the first ten iterations, which is
more realistic for a convergent iterative solver. Moreover, the
exponential decay is steeper than for the other error measures.
This is apparent since the energy error decreases quadratically
with wi and xi, whereas the Fischer-Burmeister and the natural
residual error descend linearly with wi and xi.

On the right of Fig. 9, we observe that all error curves start
from similar error values, which then diverge from each other
with an increasing number of iterations. The iterative PGS solver
is initialized with the same value k ¼ 0 for all time steps, i.e., it is
not warm started using the solution of the last time-step. Thus, the
error value is similar in the first iteration of each time-step before
it converges toward zero error at varying rates. The solution for
zero error is not the same for all MLCPs due to numerical

instabilities in the brick wall simulation. Note that the accuracy
level obtained by the PGS solver would not be sufficient to keep
the brick wall permanently stable. It would take several hundred
iterations to maintain stability long term. However, the objective
of this example is not to present accurate simulation results for a
stable brick wall simulation but merely to show that the solver
error decreases with the iteration count for the novel unit-
consistent measure.

5.3 Continuous Simulation: Driving Forklift. In this exam-
ple, we test the proposed error measure in a real-time dynamics
simulation of a complex mechanical system. A direct block pivot-
ing algorithm [29] is used to compute the constraint, contact, and
friction impulses, which are the unknowns of the MLCP formu-
lated for each time-step of the simulation. This algorithm is pro-
ven to converge to the exact solution in a finite number of
iterations. However, convergence cannot be guaranteed if the
number of iterations is limited; as it is often the case for large
scale real-time simulations, where a computational-time budged is

Fig. 12 Angular velocity of the front wheel on the left (top left), the front wheel on the right (top right), the rear
wheel on the left (bottom right), and the rear wheel on the right (bottom right). Choosing the best solution based
on an error measure significantly reduces velocity instabilities in the simulation. The velocity spikes stop after
less than 3 s, whereas the spiky behavior continues past 7 s if the last incorrect algorithm solution is used.
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imposed for each time-step. For this purpose, we compute the
MLCP error for the intermediate solution in each solver iteration
using the Fischer-Burmeister, the natural residual, and the pro-
posed energy error measure. If the algorithm does not find the
solution in this iteration limit, we either keep the result of the last
iteration or choose the intermediate solution with the lowest error
according to one of the three error measures in this paper. The
generalized velocities and system configuration are then computed
based on these constraint impulses.

The forklift in Fig. 10 is modeled using revolute joints for the
rotational degree-of-freedom of each wheel. The rear wheels are
steerable and controlled by a position input through a revolute
joint with limits. We model the rolling resistance of the wheels as
angular friction around the axis passing through the two contact
points that are used to represent the contact between each wheel
and the ground. The drivetrain contains a torque converter
between engine and transmission and a differential to allow the
two driven front wheels to spin at different speeds. During the
simulation, the torque applied to the driven wheels is first
increased and then kept constant while the steering angle is kept
constant. The vehicle is expected to reach a constant speed in a
circular trajectory until it returns to the starting point. We set the
iteration limit to 15, which is lower than required to simulate the
forklift in real time at 60 Hz. In this case, the MLCP solver is not
always able to find the right solution within this artificially small
iteration limit.

At first, we create the reference trajectory of the forklift in the
x–y-plane using the direct solver without any iteration limit. Then,
we repeat the same simulation using a direct solver while enforc-
ing the iteration limit. We monitor the MLCP error for all inter-
mediate solutions and either keep the solution of the last iteration,
i.e., no error correction, or pick the one with the lowest error
according to the Fischer-Burmeister function, the natural residual,
or the proposed energy error measure. Figure 11 shows the forklift
trajectories for all five cases. On the left of Fig. 11, the plot of the
full driving circle illustrates that the forklift deviates significantly
from its path if we simply keep the solution of the last iterate (see
curve “no correction”). We can observe multiple discontinuities in
the angular speed of the forklift wheels during the first quarter of
the driving circle (see Fig. 12), which can be visually perceived as
“jerks” in the simulation graphics. This causes the forklift to
decelerate temporarily so that it will only travel through about 7/8
of the entire circle at the same time the reference completes the
full circle. If we choose the best solution according to one of the
error measures, we obtain visually identical solutions compared to
the reference. Figure 12 shows that the spikes in the angular
velocities of the wheels stop much earlier in the simulation when
using an error measure. On the right of Fig. 11, a detailed view of
parts of the driving circle is displayed, which shows that the pro-
posed energy error measure is closest to the reference. However,
the Fischer-Burmeister and the natural residual based measure are
only a few centimeters away.

This forklift example shows that it is definitely advisable to
choose the best solution using an error measure since this can pre-
vent large simulation errors that make the forklift diverge from its
reference path and even manifest themselves visually. Macroscopi-
cally, all three error measures prevent visual differences, abrupt
changes in the wheel velocities, and large perturbation from the ref-
erence. The proposed energy error leads to a position trajectory
closest to the reference trajectory, but only slightly closer than the
other two measures. The proposed energy error measure and the
natural residual lead to the least wheel velocity fluctuations. How-
ever, only the energy error measure provides a physical error inter-
pretation and a unit-consistent treatment of errors.

6 Conclusion

The most used error measures for MLCP solvers do not take the
physical nature of mechanical models into account, which leads to
an inconsistent treatment of units. The proposed unit-consistent

error measure defines an energy error per constraint by means of
the effective mass, which solves the unit consistency issue
through the transformation of impulse and velocity errors into
energy errors. We have shown that only the energy error measure
computes the solver error in a unit-consistent manner and it
reaches zero error if and only if a valid solution to the MLCP is
found. The unit-consistent measure does not require any reference
solution, which is a major advantage since it can be costly to com-
pute a reference for large-scale problems. Furthermore, simulation
results illustrate that the energy error can decrease monotonically
when the MLCP solver converges to the solution. The computa-
tional cost of the novel error measure is inexpensive in compari-
son to the overall cost of an MLCP solver iteration of direct
solvers. Thus, the computation can be done for real-time simula-
tions without affecting the performance noticeably. If a direct
solver is not able to terminate due to a time constraint, we can
monitor all the iterations, determine the solution with the least
energy error, and use this solution for further calculations. Simulation
results show that using an error measure to monitor the quality of
intermediate solutions throughout the algorithm iterations as well as
choosing the best solutions among them can significantly reduce the
risk of simulation instabilities and deviation from the reference.
Moreover, the proposed energy error measure performs best com-
pared to existing error measures or not using any error measure.

As future work, the unit-consistent error could be used to stop
the MLCP solver if a solution of the MLCP is found, which is
close enough to the true solution. This requires the definition of an
error threshold, which classifies what solution will be considered
as close enough to the true one and which therefore affects the
solution accuracy. It is particularly challenging since the required
accuracy of a solution depends on the engineering application and
the simulation scenario.
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Appendix: Proof on Diagonal Matrix Elements

If matrix A is symmetric positive definite, then there exists a
symmetric positive definite matrix B such that A¼B

2. The diago-
nal elements of A are given as

Aii ¼ eT
i Aei ¼ eT

i BTBei ¼ jjBeijj2 (A1)

and similarly the diagonal elements of A�1 as ðA�1Þii
¼ jjB�1eijj2. The Cauchy–Schwarz inequality leads to

hBei;B
�1eii2 � jjBeijj2jjB�1eijj2 ¼ AiiðA�1Þii (A2)

and

hBei;B
�1eii ¼ eT

i ðB�1ÞTBei ¼ eT
i B�1Bei ¼ eT

i ei ¼ 1 (A3)

Thus, it follows that AiiðA�1Þii � 1, i.e., the diagonal elements of
the inverse of A are greater than or equal to the inverse of the
diagonal elements of A.
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