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ABSTRACT

Co-simulation techniques enable the coupling of physically
diverse subsystems in an efficient and modular way. Complex en-
gineering applications can be simulated in co-simulation setups,
in which each subsystem is solved and integrated using numer-
ical methods tailored to its physical behaviour. Co-simulation
implies that the communication between subsystems takes place
at discrete-time instants and is limited to a given set of coupling
variables, while the internals of each subsystem are generally
not accessible to the rest of the simulation environment. In non-
iterative co-simulation schemes, this may lead to the instability
of the integration. Increasingly demanding requirements in the
simulation of machinery have led to the coupling, in real-time
co-simulation setups, of multibody models of mechanical systems
to computational representations of non-mechanical subsystems,
such as hydraulics and electronics. Often, these feature faster
dynamics than their mechanical counterparts, which leads to the
use of multirate integration in non-iterative co-simulation envi-
ronments. The stability of the integration in these cases can be
enhanced using interface models, i.e., reduced representations
of the multibody system, to provide meaningful input values to
faster subsystems between communication points. This work de-
scribes such interface models that can be used to represent non-
smooth mechanical systems subjected to unilateral contact and
friction.

INTRODUCTION
Predictive simulation of engineering systems is currently a

valuable tool in the development of new products and industrial
applications. Improvements in computational power and soft-
ware capabilities during the latest decades have expanded the
range of problems that can be addressed with this method, as well
as the expectations about its performance and the results that it is
able to deliver. This is also the case with forward-dynamics sim-
ulation of multibody systems. Presently, multibody simulations
are able to deal with challenging phenomena such as flexibility,
contacts, and friction in an efficient way [1]; in many cases, the
interaction of the mechanical system with elements of a different
physical nature, like hydraulics and electronics, is also taken into
consideration. The techniques to include this interaction in simu-
lation can be categorized in two main groups, namely monolithic
methods and co-simulation approaches.

Monolithic formulations describe the dynamics of all the
components in an engineering application with a single set of
equations, solved with its corresponding integrator. This ap-
proach has been successfully applied to mechatronics and hy-
draulically actuated mechanical systems [2,3], showing good sta-
bility and efficiency properties [4]. Co-simulation, on the other
hand, consists in modelling and integrating separately the dif-
ferent subsystems in an engineering application. The dynamics
of each of them can then be formulated and solved using meth-
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ods especially suited to its physical behaviour. The subsystem
solvers only exchange information, i.e., their coupling variables,
through a minimum interface at discrete-time communication
points; otherwise, the numerical integration of each subsystem
proceeds independently from the others. The time interval be-
tween communication points is referred to as macro-step. This
modular approach makes co-simulation environments particu-
larly suitable for collaborative projects, as it enables each partner
to use its own modelling and solution methods regardless of the
implementation chosen by others. Moreover, the internal details
of each subsystem remain hidden, which avoids the disclosure of
intellectual property. Additionally, co-simulation makes it easier
to distribute the computational workload between several pro-
cessing units and to introduce interactions with physical compo-
nents in the simulation process, as in the case of Human- and
Hardware-in-the-Loop (HiL) setups [5]. However, the discrete-
time communication between subsystems gives rise to coupling
errors and discontinuities that may compromise the stability of
the integration process and the accuracy of the results [6].

In general, iterative coupling schemes have been shown to
exhibit a more stable behaviour than their non-iterative counter-
parts [7]. These schemes update the input variables in each iter-
ation and subsequently retake the integration step of one or more
subsystems. There exist applications, however, in which restart-
ing the integration from a previous state is not possible, either
because certain subsystems do not allow such an operation, or be-
cause the available time to carry out the computations is limited.
In these cases, explicit, non-iterative coupling approaches must
be used; Jacobi-schemes are a common choice in non-iterative
co-simulation, as they permit the parallelization of subsystem in-
tegration. In a Jacobi scheme, the subsystems exchange inputs at
the beginning of a macro-step and proceed with their integration
independently until the next communication point.

Keeping non-iterative co-simulation schemes stable is chal-
lenging, especially if subsystems have direct feed-through, i.e.,
their outputs explicitly depend on their inputs [7]. In some ap-
plications it may be difficult to know whether this is the case,
because information about subsystem internals may not be avail-
able and the subsystems behave effectively as black boxes. Also,
even if the integration process remains stable, coupling errors
at the interface may cause the simulation results to be inaccu-
rate [8]. Extrapolation and approximation of subsystem inputs
are strategies commonly used to improve non-iterative schemes
[9] ; adaptive extrapolation techniques can be used as well [10].
Another possibility is to act on the coupling variables or the com-
munication step-size to maintain the energy balance at the inter-
face [11].

The above mentioned methods only require the information
contained in the coupling variables to operate. The availabil-
ity of additional data about subsystem internals, however, en-
ables the definition and use of alternative strategies to keep ex-
plicit co-simulation schemes stable and accurate. The directional

derivatives of the subsystems can be used to this end [12] if they
are known; otherwise it is also possible to estimate them using
subspace identification algorithms [13]. If the information ex-
changed between subsystems includes details about their internal
energy, monitoring and correction algorithms can be employed to
improve the energy balance of the whole system [14].

Interface models (IM) represent a recently developed ap-
proach to enhance the explicit co-simulation of multibody sys-
tems in multirate environments [15]. Multibody systems are of-
ten coupled to other subsystems with faster dynamics, such as
hydraulics and electronics, which take more than one integration
step between communication points. The inputs that the multi-
body subsystem provides to these, however, cannot be updated
until the next exchange of coupling variables, and this may re-
sult in instabilities and inaccurate results, even if extrapolation
techniques are used. The IM is intended to provide these faster
subsystems with a physics-based prediction of the evolution of
their inputs during the macro-step. The IM is obtained from the
characterization of the interaction between the mechanical sub-
system and its environment, which can be done through an in-
terface described by a set of generalized velocities. These gen-
eralized interface velocities can be used to define a subspace in
the dynamic model, the interface subspace, analogous to the sub-
space of constrained motion [16], in which the dynamics of the
whole multibody system can be decomposed. The IM thus ob-
tained constitutes a reduced order expression of the dynamics of
the mechanical system, represented by an effective mass matrix
matrix and an effective force term.

The concept of IM was introduced in [15] for mechanical
systems with smooth dynamics formulated at the acceleration
level. The research in this paper extends the use of IM to nons-
mooth mechanical systems, such as those with unilateral contact,
impacts, and dry friction. The dynamics of such systems is often
formulated at the impulse-momentum level using time-stepping
schemes [17, 18]. These methods can handle collisions seam-
lessly and remove inconsistencies and indeterminacies caused by
friction that affect their acceleration-based counterparts [19, 20].
Although the system dynamics can be formulated as a linear
complementarity problem (LCP) for the frictionless case [21],
considering Coulomb friction at the contact points leads to non-
linear complementarity problems (NCP). Nevertheless, it is pos-
sible to discretize the Coulomb model via the so-called faceti-
zation of the friction cone, so that the formulation recovers the
form of an LCP [19,22,23].Formulating the dynamics as an LCP
is advantageous due to the notable amount of solver algorithms
available in the literature [24].

In this paper, we develop the IM for nonsmooth mechan-
ical systems whose dynamics is formulated at the impulse-
momentum level as a mixed linear complementarity problem.
This reformulation is compatible with unilateral contact with
friction and able to model stick-slip transitions. The proposed
IM was tested in numerical experiments with hydraulically ac-
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FIGURE 1. Interfacing a multibody system M with a subsystem S
using an interface model I.

tuated mechanical systems. Results confirmed the ability of the
IM to enhance the stability and accuracy of non-iterative multi-
rate co-simulation setups with multiphysics components.

CO-SIMULATION WITH INTERFACE MODELS
Let us consider a multibody system M that interacts with

another subsystem S, which can also be constituted of many
other subsystems S1, S2, ... Sn, as shown in Fig. 1. As far
as the multibody system is concerned, all the interactions with
S can be considered with one single interface. In many prac-
tical applications, S represents components with dynamics and
time scales different from those of a multibody system, e.g., hy-
draulics or electronics. Such components often need to be inte-
grated at faster rates than their mechanical counterparts. Here,
we consider a multirate setup where subsystem S uses a smaller
integration step-size than the multibody system, i.e., hM > hS .

The multibody system M and the subsystem S exchange
information in the form of inputs u and outputs y at discrete-
time communication points, as shown in Fig. 2. Each subsystem,
M and S, has its own states and integration methods, which are
not accessible to the rest of the co-simulation environment. The
communication between the two subsystems takes place via a co-
simulation interface, and the data is exchanged at the beginning
of each macro time-step, of size H, following a Jacobi scheme.
Therefore, the subsystems do not receive any information from
each other until the following communication point. For this rea-
son, the input values of the subsystem uS must be extrapolated
in some way within the macro time-step.

Interface models (IM) can be used to provide a physics-
based prediction of the inputs of the fast subsystem, uS , until the
next communication point is reached. Instead of extrapolating
these inputs from the time-history of the coupling variables, IMs
approximate the outputs of the multibody system yM in terms of
its currently available inputs uM and its dynamics.

The introduction of an IM of subsystem M in the co-
simulation leads to the scheme shown in Fig. 3, a multirate in-
tegration algorithm in which two communication step-sizes, H1
and H2, can be employed. With this approach, subsystem S
exchanges information through the co-simulation manager only
with the IM, denoted by I. Both I and S are integrated at a

Multibody S. (M)

q, v,
∫
M, hM

Mv̇+ c = f+ATλλλ c

Co-simulation
Manager

H

Subsystem (S)

x,
∫
S , hS

ẋ = g(x)

yM

uM yS

uS

FIGURE 2. Block diagram of a multibody system M and subsystem
S coupled in a co-simulation setup.
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∫
S , hS

ẋ = g(x)

Interface Model (I)
ΦΦΦi, wi,

∫
I , hI

M̃iẇi = λ̃λλ i + λλλ i
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yS
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FIGURE 3. Block diagram of a multibody system M and subsys-
tem S coupled in a co-simulation setup via an interface model I of the
multibody system.
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FIGURE 4. Timeline of Jacobi-scheme co-simulation using an inter-
face model I of the multibody system M.

faster rate and synchronized every H2. Furthermore, if the com-
putational power allows it, they can even be integrated simulta-
neously, i.e., H2 = hS = hI . The full multibody system model
M, on the other hand, is integrated at a slower rate and syn-
chronized with the rest of system every macro time-step of size
H1 > H2. The timeline of the resulting co-simulation setup is
shown in Fig. 4. It must be noted that the output yM, and sub-
sequently the inputs of I, u1, must contain all the information
necessary to generate the IM.

The configuration and velocity of a multibody system can be
parametrized by a set of r generalized coordinates q and a set of n
generalized velocities v; in general, r > n. The relation between
them can always be written as q̇ = Nv, where N(q) is an r× n
transformation matrix. The interactions between the bodies can
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be parametrized by a set of mc velocity components wc, which
can be related to the generalized velocities as

wc = Av (1)

where A(q) is the mc×n constraint Jacobian matrix. Such inter-
actions can be modelled via kinematic constraints, either bilat-
eral or unilateral. The dynamic equations of a multibody system
subjected to kinematic constraints can be written as

Mv̇+ c = f+AT
λλλ c (2)

where M(q) is the n×n mass matrix, c(q,v) is the n×1 array of
Coriolis and centrifugal terms, f is the n×1 array of generalized
forces, and λλλ c is the mc×1 array of constraint forces. The gener-
alized forces can be decomposed as f = fa + fi, where fa contains
the generalized applied forces, and fi contains the generalized
interface forces.

The interface between the multibody systemM and subsys-
tem S can be parametrized using mi interface velocities

wi = Dv (3)

where D(q) is the mi × n interface Jacobian matrix. In some
cases, the interface velocity can be defined as time derivatives of
the interface coordinates ΦΦΦi(q), as wi = Φ̇ΦΦi. Furthermore, the
generalized interface forces fi can be expressed in terms of mi
interface forces λλλ i as

fi = DT
λλλ i. (4)

If a force-displacement coupling is selected to conduct the
co-simulation of multibody systems, these interface forces are
usually provided by the external subsystem S, and so λλλ i is part of
the input of the multibody systemM. In this case, the interface
kinematics ΦΦΦi and wi are the output yM. Nevertheless, the input
uM can be the interface kinematics instead, so that ΦΦΦi and wi are
given by S are need to be enforced through kinematic constraints.

The interface model I can be obtained by expressing the
dynamics of the multibody system M in terms of the interface
velocities wi. If all constraints are bilateral, the dynamics of the
interface model I can be expressed as [15]

M̃iẇi = λ̃λλ i +λλλ i (5)

where the effective mass M̃i and effective force λ̃λλ i terms are

M̃i =
(

D(I−Pc)M−1DT
)−1

(6)

λ̃λλ i = M̃i

(
D(I−Pc)M−1(fa− c)+ Ḋv+DPcv̇

)
(7)

The projector matrix Pc = M−1AT
(
AM−1AT

)−1 A accounts for
the topology of the system and the connection between all the
bodies. However, the interface model of a nonsmooth multibody
system cannot be directly described by the expression of the ef-
fective mass and force terms above. This is because of inequal-
ities in the dynamics formulation due to unilateral contact and
friction in the system. Therefore, the IM needs to be reformu-
lated in order to account for contact detachment and stick-slip
transitions.

NONSMOOTH MULTIBODY SYSTEM DYNAMICS
In general, we can consider three different kinds of inter-

actions: bilateral, unilateral, and friction. Then, the constraint
forces λλλ c and constraint velocities wc can be arranged as

λλλ c =

λλλ b
λλλ n
λλλ t

 and wc =

wb
wn
wt

=

Ab
An
At

v (8)

where λλλ b contains the mb bilateral constraint force components,
and λλλ n and λλλ t contain the mn normal contact forces and mt tan-
gential contact forces, respectively. Here, for each contact point,
one normal component and two tangential components along two
orthogonal directions on the tangent plane are used.

Bounds in the constraint forces introduce nonsmoothness
into the system, and can be defined in general as

λλλ
lo
c 6 λλλ c 6 λλλ

up
c (9)

where λλλ
lo
c and λλλ

up
c are the lower and upper force bounds, and

can be set to infinity for bilateral constraints. Unilateral con-
straints require a lower bound since the contact force must be
non-negative, therefore

0 6 λλλ n 6+∞∞∞. (10)

Upper and lower bounds can be defined for friction forces using
a faceted approximation of the friction cone [18, 19, 22]. If µ j
is the friction coefficient, then for each of the two friction com-
ponents of the j-th contact point, −µ jλn j 6 λt j,1 ,λt j,2 6+µ jλn j .
Usually, the dependency of the bound on the normal force λn j

is not enforced explicitly in the formulation, but rather through
iterations [18], or using values from previous time instants [23].

Constraints can only be satisfied if the forces are within
bounds. Otherwise, when a force reaches a bound, the kinematic
constraint becomes unilateral, which can be defined through
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complementarity as

0 6 wlo
c ⊥

(
λλλ c−λλλ

lo
c
)
> 0

0 6 wup
c ⊥

(
λλλ

up
c −λλλ c

)
> 0

}
(11)

where wc = wlo
c −wup

c is the constraint velocity decomposed into
positive and negative components, and ⊥ denotes component-
wise complementarity. For unilateral constraints, this comple-
mentarity conditions becomes

0 6 wn ⊥ λλλ n > 0. (12)

Here, this complementarity condition will be also written in a
more compact form as

wc ⊥ λλλ c ∈
[
λλλ

lo
c ,λλλ

up
c
]
. (13)

The Mixed Linear Complementarity Problem
The dynamic equations can be formulated at the impulse-

momentum level in order to include the complementarity condi-
tions. This is possible by using a finite difference approximation
of both the generalized acceleration v̇ = (v+−v)/h, and the con-
straint acceleration ẇc = (w+

c −wc)/h, where h is the step size.
Then, the constraint velocities in Eq. (1), together with the dy-
namic equations in Eq. (2), and the complementarity conditions
in Eq. (11), formulate the mixed linear complementarity problem
(MLCP)

[
M −AT

A 0

][
v+

hλλλ
+
c

]
+

[
h(c− f)−Mv

hȦv

]
=

[
0

w+
c

]
w+

c ⊥ λλλ
+
c ∈

[
λλλ

lo
c ,λλλ

up
c
]

 (14)

where v and v+ are the generalized velocities at the beginning
and at the end of the time-step, respectively; wc and w+

c are the
constraint velocity at the beginning and at the end of the step,
repsectively, and hλλλ

+
c are the unknown constraint impulses of the

step. The derivative of the Jacobian matrix Ȧ(q,v) is computed
using the known q and v at the beginning of the step.

Furthermore, eliminating v+ in Eq. (14) one obtains

(
AM−1AT)︸ ︷︷ ︸

H

hλλλ
+
c +AM−1(h(f− c)+Mv

)
+hȦv︸ ︷︷ ︸

b

= w+
c (15)

for which λλλ
+
c are the system unknowns. The reduced form of the

MLCP can then be written as

Hhλλλ
+
c +b = w+

c ⊥ λλλ
+
c ∈

[
λλλ

lo
c ,λλλ

up
c
]

(16)

where H is the mc×mc matrix that represents the inverse effec-
tive mass of the system in the constraint space, and is positive
definite if the constraints are not redundant. Otherwise, matrix H
becomes positive semi-definite and constraint force indetermi-
nacy might occur.

INTERFACE MODELS OF NONSMOOTH SYSTEMS
The interface velocities wi and forces λλλ i from Eqs. (3)

and (4), can be incorporated into Eq. (14), so that the MLCP
can be rearranged as

M −AT −DT

A 0 0
D 0 0

 v+

hλλλ
+
c

hλλλ
+
i

+
h(c− fa)−Mv

hȦv
hḊv

=

 0
w+

c
w+

i


w+

c ⊥ λλλ
+
c ∈

[
λλλ

lo
c ,λλλ

up
c
]


(17)

Depending on the coupling approach, either w+
i or λλλ

+
i should be

known when solving the MLCP. However, to derive an interface
model we need the relation between the two in order to predict
the output of the multibody system independently from the cho-
sen coupling approach. First, we eliminate the velocities v+ from
the first row by substituting them into the other two rows, so that
the reduced version of the MLCP in Eq. (17) can be written as

[
AM−1AT AM−1DT

DM−1AT DM−1DT

][
hλλλ

+
c

hλλλ
+
i

]
+

[
bc
bi

]
=

[
w+

c
w+

i

]
w+

c ⊥ λλλ
+
c ∈

[
λλλ

lo
c ,λλλ

up
c
]

 (18)

where bc = AM−1h(fa− c)+Av+ hȦv, and bi = DM−1h(fa−
c)+Dv+hḊv are known.

Once the MLCP is solved, the constraint forces are deter-
mined, and we can distinguish between tight and active con-
straints. Tight constraints have the force at the lower or upper
bound, λλλ

lo
c or λλλ

up
c , while active constraints have the forces within

bounds. This distinction is important for the prediction of the
system dynamics, and also for the interface model. Here, we
assume that tight constraint forces will not change their value,
while active constraint forces may, since they have not reached a
bound.

Let us rearrange the constraint force and velocity arrays into
tight and active as

λλλ c =

[
λλλ α

λλλ τ

]
and wc =

[
wα

wτ

]
=

[
Aα

Aτ

]
v (19)

where λλλ α and wα are active, and λλλ τ and wτ are tight. Then,
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Eq. (18) can also be rearranged as

Hαα Hατ Hαi
Hτα Hττ Hτi
Hiα Hiτ Hii

hλλλ
+
α

hλλλ
+
τ

hλλλ
+
i

+
bα

bτ

bi

=

w+
α

w+
τ

w+
i

 (20)

Tight constraint forces are known and are assumed to be constant
(i.e., λλλ

+
τ = λλλ

lo
τ or λλλ

up
τ ). Active constraint forces are considered

within bounds, and so complementarity in Eq. (11) ensures that
w+

α = 0. Therefore, active constraint forces λλλ
+
α can be eliminated

from the system by substitution from the first row into the last
one, so that an expression with the interface force and velocity
can be written as

(
Hii−Hiα H−1

αα Hαi

)
hλλλ

+
i +

bi +Hiτ hλλλ
+
τ −Hiα H−1

αα(bα +Hατ hλλλ
+
τ ) = w+

i (21)

The expression above can be interpreted as a reduced order
model of the nonsmooth multibody system, where the dynamics
have been projected onto the space parametrized by the interface
velocities wi. Alternatively, the interface model in Eq. (21) can
also be written as the impulse-momentum dynamics equations of
the IM in Eq. (5)

M̃i
(
w+

i −wi
)
= h
(

λ̃λλ i +λλλ
+
i
)

(22)

where now the effective mass M̃i and force λ̃λλ i are

M̃i =
(

D(I− P̂c)M−1DT
)−1

(23)

λ̃λλ i = M̃i

(
D(I− P̂c)M−1(fa− c+DT

λλλ
+
τ

)
+ Ḋv+DP̂c

v+−v
h

)
(24)

where P̂c = M−1AT
α

(
Aα M−1AT

α

)−1 Aα , and λλλ
+
τ and v+ need to

be determined by solving the MLCP in Eq. (17). The expressions
of the effective mass and force terms are similar to the ones for
smooth systems in Eqs. (6) and (7). However, matrix P̂c is now
computed using the Jacobian matrix of the active constraints Aα ,
which makes the IM account for contacts that detach or slide.

Constraint Regularization
Constraint regularization is commonly used to overcome

force indeterminacy when constraints are redundant. Essentially,
constraints are relaxed and bodies are allowed to overlap with
each other, so that the constraint violation is used to define the

constraint force. Then, the regularized version of the MLCP in
Eq. (14) is [23][

M −AT

A C

][
v+

hλλλ
+
c

]
+

[
h(c− f)−Mv
hȦv+ γγγΦΦΦch−1

]
=

[
0

w+
c

]
w+

c ⊥ λλλ
+
c ∈

[
λλλ

lo
c ,λλλ

up
c
]

 (25)

where C and γγγ are mc×mc matrices containing the regularization
terms, which are usually diagonal and positive definite. Further-
more, the reduced form can be written as(

AM−1AT +C
)︸ ︷︷ ︸

H

hλλλ
+
c +AM−1hf+hȦv+ γγγΦΦΦch−1︸ ︷︷ ︸

b

= w+
c (26)

where H is now positive definite despite constraint redundancy.
If constraints are regularized, the expressions for the effec-

tive mass M̃i and effective force λ̃λλ i in Eqs. (23) and (24), can be
derived similarly as

M̃i =
(

D(I− P̂c)M−1DT
)−1

(27)

λ̃λλ i = M̃i

(
D(I− P̂c)M−1(fa− c+DT

λλλ
+
τ

)
+ Ḋv

−DM−1AT
α

(
Aα M−1AT

α

)−1(Ȧv+ γγγΦΦΦch−2)) (28)

where P̂c = M−1AT
α

(
Aα M−1AT

α +Cα

)−1 Aα .

Integration of the Interface Model
The time integration of the interface model is carried out

using a first-order implicit Euler integrator, so that interface ve-
locities and coordinates are updated as follows

w+
i = wi +hS M̃−1

i

(
λ̃λλ i +λλλ

+
i
)

ΦΦΦ+
i = ΦΦΦi +hS w+

i

}
(29)

where hS is the micro time-step of subsystem S, (hS < hM).
This integration is carried out between communication points,
therefore, the effective mass and force terms M̃i and λ̃λλ i are kept
constant in the macro time-step.

SYSTEMS WITH HYDRAULIC ACTUATORS
In this section we describe a co-simulation setup for nons-

mooth multibody systemsM with hydraulic components H us-
ing the interface model presented above. The model of a hy-
draulic crane with two actuators was used to that end. Neverthe-
less, the proposed methodology is general and can incorporate
other subsystems of different nature.
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TABLE 1. Hydraulic actuator parameters

Parameter Units Crane

ap m 6.5 ·10−3

l m 1
c Ns/m 5 ·105

cd - 0.67
ρ kg/m3 850
pP MPa 50
pT MPa 0.1
a Pa 6.53 ·10−10

b - −1.19 ·10−18

Hydraulic Actuator Model
A hydraulic system regulates the pressure of a fluid to gen-

erate the force that moves other mechanical components. The
dynamics of such systems governs the evolution of pressure dur-
ing motion, which is largely controlled by valves and pumps. In
this work, a hydraulic actuator is considered an enclosed cylinder
with two chambers separated by a piston, see Fig. 5. The pres-
sure difference between the two chambers generates a resultant
force on the piston, which is transferred to the attachment points
of the actuator. The magnitude of this force can be expressed in
terms of the hydraulic pressure difference as

fh = (p2− p1)ap− cṡ1 (30)

where p1 and p2 are the fluid pressures within the cylinder and
ap is the total piston area. Viscous friction is considered in the
cylinder through a viscous coefficient c, so that the friction force
is proportional to the actuator velocity ṡ.

The dynamics of the hydraulic system can be described with
the following set of first order, ordinary differential equations [4]

ṗ1 =
β1

apl1

[
apṡ1 +aicd

√
2(pP−p1)

ρ
δP1−aocd

√
2(p1−pT)

ρ
δT1

]
(31)

ṗ2 =
β2

apl2

[
−apṡ1 +aocd

√
2(pP−p2)

ρ
δP2−aicd

√
2(p2−pT)

ρ
δT2

]
(32)

where l1 and l2 are the variable lengths of the chambers on each
side of the piston, ai and ao are the variable valve areas that con-
nect these cylinder chambers to the pump and the tank in the
hydraulics system, cd is the discharge coefficient of the valves, ρ

stands for the fluid density, pP and pT are the hydraulic pressure
at the pump and the tank respectively. Coefficients δP1, δP2, δT1,

p1 p2

pP

pT

fhfh

si

κκ−1κκ−1

FIGURE 5. Hydraulic model of an actuator.

and δT2 are 0 when the quantity inside the square root that pre-
cedes them is negative and 1 otherwise. Terms β1 and β2 stand
for the bulk modulus in each cylinder chamber, and they are eval-
uated as a function of the fluid pressure

βi =
1+api +bp2

i
a+2bpi

, i = 1,2 (33)

where a and b are constants for the fluid. Assuming that the two
cylinder chambers have the same volume at the starting time of
the simulation, chamber lengths l1 and l2 are given by

l1 = 0.5l + s1,0− s1 and l2 = 0.5l + s1− s1,0 (34)

where s1,0 is the initial length of the actuator. Valve areas ai and
ao have m2 units and are obtained as

ai = 5 ·10−4
κ and ao = 5 ·10−4 (1−κ) (35)

In Eq. (35), κ ∈ [0,1] is the valve control parameter or spool
displacement, i.e., the kinematic input that controls the motion
of the piston. The hydraulic parameters are shown in Table 1.

Hydraulic Crane with Gripper
To test the proposed methodology in a realistic engineer-

ing application, the detailed 3D model of a hydraulic crane with
two actuators and a gripper was used. This model has a total of
18 bodies and 22 joints, which include spherical, revolute, and

7 Copyright c© 2019 by ASME



Act. 1

Act. 2

Base

Boom
Stick

Gripper

Log

Ground

FIGURE 6. A log handling crane with two hydraulic actuators.

prismatic ones. Figure 6 illustrates the main parts of the crane:
boom, stick, and gripper. Each of these parts and the connec-
tions between them can contain several bodies and joints, such
as the connection between boom and stick, which is essentially
a four-bar linkage. Actuator 1 controls the boom elevation with
respect to the base, which is fixed to the ground, and actuator 2
controls the stick elevation with respect to the boom. The gripper
has 3 non-actuated rotational degrees of freedom with respect to
the stick, and two kinematically guided claws.

The inputs of the actuators are given by a velocity controller
with proportional and derivative gains kP and kD (i.e., a PD con-
troller). The output of the controller was chosen to be the deriva-
tive of the valve displacement κ̇ , so that the control law for each
actuator j = 1,2 can be defined as

κ̇ j =−kP
j
(
w∗j −w j

)
− kD

j
(
ẇ∗j − ẇ j

)
(36)

where w∗j is the controller desired velocity, and ẇ∗j is its time
derivative. The gains were tuned manually to damp the oscilla-
tions. Then, for actuator 1, kP

1 = 6.0m−1 and kD
1 = 1.0s m−1,

and for actuator 2, kP
2 = 4.0m−1 and kD

2 = 0.1s m−1. Note that
the controller has negative feedback, because, by design, an in-
crement in the valve displacement κ would decrease the actuator
force (see Fig. 5). Additionally, the controller output was limited
to κ̇ ∈ [−3,+3]s−1.

(a) Desired velocity (b) Valve displacement
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FIGURE 7. Control law of the hydraulic crane: (a) desired velocity of
the controller, and (b) valve displacement as the output of the controller
for the simulation using an interface model and step-size hM = 16 ms.

The desired velocity of the actuators is displayed in Fig 7-a,
and it can be written for both of them as

w∗j =


0 if t 6 tini

wmax
j

t− tini

tmax− tini
if tini < t 6 tmax

wmax
j if tmax < t 6 tend

0 if t > tend

(37)

Grasping of the log occurs for t ∈ [3,5]s. The arm remains mo-
tionless until tini = 5s. The maximum desired velocity wmax

j is
applied at tmax = 6s and is kept constant until tend = 9s. The de-
sired velocity is set to be wmax

1 = −50mm/s, for actuator 1, and
wmax

2 =−20mm/s, for actuator 2 (see Fig. 7).
Friction is considered in all contact interfaces with µ = 0.5.

Due to constraint redundancy at the contact between gripper and
log, the contact constraints are regularized with a stiffness and
damping coefficients of Kn = 106 N/m and Bn = 105 Ns/m.

RESULTS
The multibody model of the log handler was created us-

ing the Vortex simulation software package; the co-simulation
manager as well as the hydraulic model were written in C++
and embedded into the software package. The simulations were
performed on an Intel Core i7-4720HQ machine with a 4-core
CPU@2.60GHz and 8 GB of RAM, and running Windows 10.

The step-size of the hydraulics was fixed to hH = 0.2 ms,
and different step-sizes hM were used for the multibody system,
which matched the macro step-size H in all simulations. The
results obtained using the interface model (IM) were compared
to those delivered by direct co-simulation with zero-order hold
(ZOH).

The displacement of actuator 1 is shown in Fig. 8 for both
approaches and several values of hM. As can be seen, the sim-
ulation becomes unstable for large step-sizes when using ZOH
direct co-simulation. On the other hand, it is possible to take
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(a) Displacement with IM (b) Displacement with ZOH
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FIGURE 8. Displacement of actuator 1 in the hydraulic crane using
(a) an interface model, and (b) a zero-order hold. hH = 0.2 ms.

larger step-sizes with an interface model without losing stability.
Figure 9 shows the velocity and force of actuator 1 during the
manoeuvre. Significant oscillations can be observed in the veloc-
ity plots, e.g., in Fig. 9-c). This takes place during the grasping
phase, when contact and friction forces have the most significant
effect on the system dynamics. The interface model alleviated
the severity of these oscillations. It is also noteworthy that ZOH
co-simulation with hM = 10 ms recovers stability after grasping
the log (t = 5 s), in spite of the severe oscillations in force and
velocity during the grasping stage. When the claws completely
grasp the log, its mass becomes supported by the arm, which
reduces the natural frequency of the system and makes its nu-
merical integration more stable.

CONCLUSIONS
Multirate co-simulation approaches make it possible to pre-

dict the behaviour of complex multiphysics systems in a modular
and efficient way. The nature of some applications and simu-
lation environments, however, requires the use of non-iterative
schemes that may suffer from accuracy and instability issues.
In particular, when conventional Jacobi co-simulation schemes
are used, this may impose limitations on the maximum macro
step-size that can be used to communicate the subsystems, as
well as on the integration step-sizes in the subsystems. This,
in turn, is detrimental for code execution efficiency, which is a
major concern in computationally demanding applications, e.g.,
those that require real-time performance. The causes of these
stability and accuracy issues can be traced back to discontinu-
ities and delays introduced by the discrete-time coupling at the
co-simulation interface. In multirate setups, the lack of updated
inputs between communication points for fast subsystems makes
it necessary to formulate some assumption about their behaviour
to proceed with the numerical integration until the next coupling
instant.

Interface models (IM) provide a reduced representation of
the dynamics of slower subsystems, to obtain a dynamics-based
prediction of the evolution of their inputs between communica-

(a) Velocity with IM (b) Velocity with ZOH
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(c) Velocity detail with IM (d) Velocity detail with ZOH
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(e) Force with IM (f) Force with ZOH
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FIGURE 9. Velocity of actuator 1 in the hydraulic crane using (a) an
interface model, and (b) a zero-order hold. Detail plots of the velocity
during the grasping phase of the log t ∈ [3,5] s are shown in (c) and (d).
Actuator force with (e) interface model and (f) zero-order hold. Differ-
ent step-sizes hM were used for the multibody system; hH = 0.2 ms.

tion points. IM for mechanical systems can be expressed in terms
of the generalized velocities that define their interface with other
subsystems in the co-simulation environment. The mechanical
system can then be represented by effective mass matrix and gen-
eralized force terms that describe its dynamics in the subspace
defined by these interface velocities. In this paper, the expres-
sion of the effective mass and force terms for mechanical sys-
tems with nonsmooth dynamics, subjected to unilateral contact
and Coulomb friction, has been put forward. This approach is
compatible with an impulse-momentum formulation of the dy-
namics of the mechanical system in the form of a mixed linear
complementarity problem (MLCP). Moreover, the proposed IM
was used in the multirate co-simulation of a mechanical system
with hydraulic actuators. Results showed that the use of an IM
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to predict the inputs of the fast subsystem between communica-
tion steps delivered more stable and accurate results than con-
ventional polynomial extrapolation techniques.
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[14] González, F., Arbatani, S., Mohtat, A., and Kövecses,
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