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Abstract
In this paper we particularly look at the wheel-terrain contact pair; the basic building block for vehicle terrain mod-
els. We will analyze the possible ways to model and simulate this interaction pair. The main goal of terramechanics
modelling is to determine the effect of the distributed ground reaction force system on the wheel, and through that,
the effect on the vehicle. From the modelling point of view we can then consider the dynamic behaviour of the wheel
as the main modelling objective, and analyze the motion of the wheel relative to an absolute frame of reference. This
motion is affected by the ground force system. Terramechanics approaches generally implicitly assume that the wheel
can be modelled as a rigid body from the point of view of its global motion behaviour. Only with such assumption can
a distributed force system be replaced by its resultants as it is typically done in wheel-terrain models. These resultants
represent the force and moment components related to traction, compaction, side force, and motion resistance, for ex-
ample. We will describe and analyze a range of possibilities of how these resultants can be determined and interpreted
to represent the distributed force system and include the information about the material constitution of the ground into
the model. We will present detailed implementation studies and simulation results by using semi-empirical and exper-
imental terramechanics models, and evaluate the different approaches.

Keywords: terramechanics modelling, wheel-soil interaction, simulation

1. Introduction

The wheel forms the main interface between a vehicle and its environment, and modelling the wheel-terrain in-
teraction is one of the most challenging problems in the dynamics simulation of off-road vehicles. The complexity
of this stems from modelling the soil reactions at different driving conditions and balancing between accuracy and
computational cost.

In general, interaction models with finite element discretization, or the discrete element model based represen-
tation of the soil, require less modelling assumptions [1, 2]. On the other hand, these models do not allow for real
time simulation, and the time required for simulating a vehicle limits their use in current engineering practice. For
mobility/trafficability analysis, the semi-empirical Bekker [3] and Wong-Reece models [4, 5, 6], and such experimen-
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tal models [7, 8, 9] are preferred which can support statistical analysis [10]. In the formulations proposed by Bekker,
and imporved by Wong and Reece, the normal stress distribution is typically determined based on an empirical model,
while the shear stresses are calculated analytically by using the kinematics of the wheel and applying the Janosi-
Hanamoto formula [11]. Then the resultant ground reaction forces and moments applied to the wheel are calculated
by the integration of these stresses along the contact patch. Although these models can give a good estimate on the
steady state wheel-soil interaction behaviour in certain motion regimes (typically for higher slip ratios), they do not
take into account the soil profile, the soil dynamics or the transient motion of the wheel. Similarly, the traction predic-
tion equations obtained through the statistical analysis of a large number of experiment are only valid for steady state
conditions. These model however may embed extra information on the tire effects without the need of considering the
actual contact patch and tire deformation.

None of the above classical terramechanics models include information on the dynamics of the wheel-soil contact
pair, and they have limitations regarding the vertical dynamics. The pressure-sinkage relationship of the Bekker model
is based on quasi-static experimental results. The Wong-Reece model modifies this relationship by including the effect
of slip through considering the change of the location of the maximum normal stress at different driving conditions.
This is also based purely on experimental observations made in steady state, and the proposed empirical formula may
not predict accurately the stress distributions in dynamic simulations. In the experimental traction prediction formulas
the cone-index [8, 4] characterizes the load bearing capability of the soil. This is used to determine the mobility or
mobility reduction due to the expected sinkage of the wheel, but otherwise there is no information available on the
vertical interaction force acting on the wheel.

Regarding the traction force, the Wong-Reece model assumes that the flow of the soil under the wheel can be
neglected for driven wheels, while an average soil velocity is considered for towed wheels [6]. These assumptions
results in different shear stress distributions which are in better agreement with the experiments. It was also pointed
out in [12] that considering the resultant traction force as a concentrated force acting at the very bottom of the rigid
wheel may require case specific considerations for the corresponding contact velocity. This is due to the fact the
forward flow of the soil cannot be neglected during braking and it has to be accounted for even in case of models that
use the resultant force and moments originating from terramechanics relations.

The inaccuracies in the modelling of the stress distributions in case of the semi-empirical models are partially com-
pensated by the fact that the resultant forces and moments that are acting on the wheel are calculated by integration.
Therefore, they provide a good approximation for simulating steady state behaviour and can be used to qualitatively
simulate the wheel-soil interaction. For quantitative agreements case specific corrections, tuning and further improve-
ment of the models might be necessary [2, 13].

The steady state assumptions, the insufficient data in some operating regimes (e.g., braking), and/or unavailable
soil properties demand for robust simulation methods. Therefore, in the present paper, we will apply a constraint-based
complementarity formulation [12] for the dynamic simulation of the wheel-soil contact pair. This previous work is
further developed, and applied to not only the semi-empirical Wong-Reece model, but to two other examples using
cone-index based traction prediction equations. The focus of our analysis is on the applicability of the steady state
models in dynamic simulation with real time requirements. The chosen examples will also allow us to show the
different possible interpretation of the ground reaction components and their consideration in dynamic simulations.

2. Wheel-Soil interaction models

The wheel-soil interaction may be modelled by considering the soil as a continuum, or as a granular material.
Also, for wheels with tire, the flexibility of the tire may be modelled by lumped viscoelastic elements or by using a
continuum based description. Whether a discretized model or a continuum model is more appropriate for analysing a
given problem depends on many factors. These could include the accessible computational tools, the availability of soil
properties, the expected simulation time and precision. Very often, the wheel is modelled as a rigid body and the soil is
considered as a continuum. In these cases the soil reactions are determined by integrating the shear and normal stresses
acting at the wheel-soil interface. Another approach is to set up a model is to use a large number of experiments and
preform dimensional analysis. The traction prediction equations obtained this way are based entirely on experimental
observations, and generally have only a few parameters that characterize the mobility of a vehicle based on the load
bearing capability of the soil, tire deflection and wheel geometry.
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Fig. 1. Equivalent force system corresponding to the Wong-Reece model

2.1 Semi-empirical models

The semi-empirical models consider the soil as continuum and use experimental data as well as the kinematics of
the wheel to approximate the stress distributions under the wheel. The pressure sinkage formula [3, 5] that determines
the normal stresses have the general form

σ = (k1 + k2 b)
(

ζ (θ ,θm)

b

)n

(1)

where k1, k2 are soil properties, and ζ (θ ,θm) is the sinkage of a point on the perimeter of the wheel located by angle θ
and modified according to the known location, θm, of the maximum normal stress. This location may also depend on
the slip, is, and the properties of the soil. In addition, parameter b is the characteristic size (width) of the wheel, and n
is the sinkage exponent.

The kinematics of the wheel is considered to determine the shear deformation along the perimeter of the wheel. For
this, it is usually assumed that both the angular and the linear velocity of the wheel is constant. Then, by approximating
the shape of the stress-deformation curve, the shear stresses may be calculated by the bounded exponential formula [11]

τ = (c+σ tanφ)e− j(θ ,is)/K (2)

where c and φ are the cohesion and the internal friction angle of the soil, K is the shear deformation modulus, and
j(θ , is) is the shear deformation. In the expression of the shear deformation the dots indicate that its calculation
depends also on other factors, like the assumption made on the soil flow under different driving conditions [5, 6].

By using the stresses defined in Eqs. (1) and (2) the resultant force system acting at the centre of a wheel can be
written as

Fx = Fτx−Fσx = rb
∫ θf

θr
τ cosθ dθ − rb

∫ θf

θr
σ sinθ dθ (3)

Fz = Fτz +Fσz = rb
∫ θf

θr
τ sinθ dθ + rb

∫ θf

θr
σ cosθ dθ (4)

Ty =−Tτ =−r2b
∫ θf

θr
τ dθ (5)

where θf and θr are the front and rear contact angles, r is the radius of the wheel, and the subscripts σ and τ refer to
force components that are due to the normal and shear stresses, respectively. Coordinate x denotes the longitudinal
motion direction and z points normal to the ground. Generally, infinitely many other equivalent force systems could
be considered. However, when one wants to analyze the wheel-soil interaction, it is advantageous to consider such
an equivalent force system the components of which directly define the normal force and the traction force [12], for
example. A possible choice of an equivalent system of generalized forces is shown in Fig. 1, where Fn is the normal
force, Ft is the traction force, Fc is the resistance force due to soil compaction, and Trr is the residual resistance torque
corresponding to shearing. These components are defined as

Fn = Fτz +Fσz , Ft = Fτx , Fc = Fσx and Trr = Tτ −Ftr (6)
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Fig. 2. Equivalent force systems considered in experimental models (reproduced based on [8], [14] and [15])

This set of generalized forces constitute to a physically motivated selection of the interaction force components.
We also note that these components form a non-minimum set of generalized forces. For example, the longitudi-
nal/horizontal components Ft and Fc could not be measured separately in an experiment.

2.2 Experimental models

The experimental models focus on expressing the drawbar pull, i.e., the pulling force a wheel can exert, as function
of the slip ratio and other parameters characterizing the mobility of a vehicle. This force can directly be measured or
calculated from measurements. Similarly, the motor torque is a quantity which can be measured, and the motion
resistance can then be calculated as the difference of the thrust provided by this torque and the drawbar pull.

By using the traction prediction formulas proposed in [8], the steady state relationship can be written as

Q
r
= P+M (7)

where P is the pull, M is and the motion resistance, Q/r is the thrust, which is assumed to be proportional to the applied
torque in steady state Q. The model predictions for the torque ratio and the motion resistance ratio are

Q
rW

= 0.88
(
1− e−0.1Bn

)(
1− e−7.5 is

)
+0.04 (8)

M
W

=
1

Bn
+

0.5is√
Bn

+0.04 (9)

where is is the slip, W is the weight (vertical load on the wheel) and Bn is the mobility number. This mobility number
primarily depends on the cone index (CI) which characterizes the load bearing capability of the soil.

While the pull, the thrust and the motion resistance are the main force components used in the literature, their
interpretation might be different due to how the corresponding equivalent force systems are considered. For example,
as it is shown in Fig. 2 the motion resistance is sometimes represented as a force acting at the “surface” of the soil,
which choice is arbitrary.

As it was stated above, in the present work we use a constraint based complementarity formulation to simulate
the wheel. In this formulation it is essential to define the contact velocities that corresponds to the ground reaction
components. For this, we propose to use the same equivalent force system that was presented for the Wong-Reece
model in Fig. 1, but assign different meaning to each components. In this figure, the pull is denoted by Fp, and Ta is the
applied torque, but the traction force and the compaction resistance can have two different interpretations.

One possibility is to model the motion resistance as a force applied at the centre of the wheel. In this case Ta = Q,
Fc = M, and the traction force is equal to the thrust, i.e., Ft = Ta/r. From the torque balance it also follows that
Trr = 0. In the following we will term this as the force equivalent model of motion resistance. Alternatively, the motion
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resistance can also be interpreted as a torque with Trr = Mr and by setting Fc = 0. In this case, the traction force
will be equal to the pull, Ft = P. The corresponding model is called the torque equivalent model henceforward. We
note that these models are really just different representations of the same system of forces acting on the wheel, but
they might show a slightly different dynamic behaviour when they are used with the constraint-based complementarity
formulation.

3. Simulation Methodology

The kinematics of vehicle systems can be represented by a set of generalized coordinates q and a set of generalized
velocities v, which can be related through the transformation q̇ = N(q)v. Then, the dynamic equation of the system
can be written as follows

Mv̇ = fa + fg (10)

where M(q) is the mass matrix, fg contains the generalized ground reaction forces, and f0 contains the rest of general-
ized forces acting on the system.

To integrate the system equations in a dynamic simulation, some considerations regarding the time discretization
need to be taken. The ground reaction forces can be computed by using the state of the system at the beginning of the
time-step, and applied directly on the system as known forces. In such case, this explicit force representation allows to
determine the acceleration of the system, and the system velocity at the end on the time step can be computed using a
finite difference approximation of the velocity as

vk+1 = vk +hM−1(fk
a + fk

g
)

(11)

where vk and vk+1 are the velocity at the beginning and at the end of the time-step, h is the time-step size, and M
is computed using the known configuration of the system. The configuration at the end of the time step can then be
determined as

qk+1 = qk +hNvk+1 (12)

where qk and qk+1 are the configuration at the beginning and at the end of the step. The velocity transformation matrix
N is computed using the known state of the system.

On the other hand, the ground reaction fg can be considered as implicit constraint forces, so that their values in
the current time-step depend on the velocity at the end of the step vk+1. For this purpose, we shall define a set of
constraints to represent such forces, which can be characterized by the set of constraint velocities u = Av, where A(q)
is the constraint Jacobian matrix. Then, the dynamic model in Eq. (10) can be written as

Mv̇ = fa +ATλλλ (13)

where λλλ contains the ground reaction forces that the integration scheme needs to solve for.
Following a similar approach as above, the dynamic model in (13) can be discretized via a finite difference ap-

proximation and written in matrix form as[
M −AT

A 0

][
vk+1

hλλλ k+1

]
=

[
Mvk +hfk

a
uk+1−uR

]
(14)

where λλλ k+1 are the unknown constraint forces, uk+1 are the unknown constraint velocities, and uR are reference
velocities. However, with this many unknown variables, some additional relations need to be specified to be able to
solve the dynamic equations. For this purpose, the ground reaction forces can be approximated by specifying a range
of feasible values, so that each constraint velocity (i = 1 . . .nu) can be defined as

uk+1
i


> uR

i λ k+1
i = λ L

i

= uR
i if λ k+1

i ∈
(
λ L

i ,λ U
i
)

6 uR
i λ k+1

i = λ U
i

(15)

where uR
i is usually zero, and λ L

i and λ U
i are the lower and upper bound of the constraint force, which are estimated

based on the desired force λ D
i ∈

[
λ L

i ,λ U
i
]

defined by the model and using the current state. This constraint force law
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in Eq. (15), can be used to characterize many different non-smooth phenomena, such as unilateral contact, as well as
Coulomb friction. Here, it is used for modelling the wheel-soil interaction forces obtained through terramechanics
models.

The new configuration computed in the same way as in the explicit integration scheme, see Eq. (12). In addition,
the proposed constraint-based representation can be formulated as a mixed linear complementarity problem (MLCP)

AM−1AThλλλ k+1 +A
(
vk +hM−1fk

a
)
+uR = uk+1 ⊥ λλλ k+1 ∈

[
λλλ L,λλλ U] (16)

where the operator ⊥ describes the component-wise complementarity condition given in Eq. (15). If the lead matrix
of the problem AM−1AT is positive definite, the problem has a unique solution, but if it is rank deficient, there are
infinitely many possible solutions. This happens when the system of ground forces applied to the wheel is redundant.
In such a case, the regularization of the constraint can solve this issue by defining an additional relation between the
constraint force and the constraint velocity while the force is within bounds bound, i.e., if λ k+1

i ∈
(
λ L

i ,λ U
i
)
,

λ k+1
i =−di

(
uk+1

i −uR
i
)

(17)

where di is a damping coefficient that tends to infinity when there is no regularization, and it might be defined using
the desired force λ D

i and the current constraint velocity uk
i .

4. Single wheel case study

To simulate a single wheel, we can describe its planar motion with the two velocity components of the centre vx
and vz, and the angular velocity ωy. The dynamic model in Eq. (10) associated with these generalized velocities has
the simple form mx 0 0

0 mz 0
0 0 Iy

 v̇x
v̇z
ω̇y

=

 −Fp
−mzg

Ta

+
Fx

Fz
Ty

 (18)

where Fp is the externally applied pull, Ta is the motor torque applied to the wheel, g = 9.81 m/s2 is the acceleration
of gravity, and the ground force components Fx, Fz, and Ty are the resultant system of forces acting on the wheel. The
quantities mx and mz describe the mass of the system associated with the horizontal and vertical directions, respectively,
and Iy is the moment of inertia of the wheel about its axis.

Commonly these mass quantities take into account not only the mass of the wheel, but also the mass of part of the
vehicle. The assumption that the centre of the wheel is constrained to the chassis of the vehicle is valid for the cases
where the suspension system does not significantly affect the vehicle dynamics. For our study, we use a model of a
quarter-vehicle with one single wheel.

The parameters of this model and the considered soil properties are collected in Tab. 1. The mass of the vehicle,
the size of the wheel, and the soil properties are similar to the parameters used in reference [12] to simulate a planetary
rover with rigid wheels. The parameters of the empirical, cone-index based model were selected independently, but
the stiffness of the soil, kz = k1 +k2b, was derived from the Wong-Reece model to have a similar vertical dynamics. In
addition, pw is the tire pressure and hw is the section height of the wheel which are only used to calculate the mobility
number Bn in the traction prediction equations. Otherwise the wheel is considered as rigid.

Table 1. Simulation parameters

Vehicle Wong-Reece model Cone index model
mx 116 kg k1 5.7 kPa K 0.0115 m CI 400 kPa
mz 116 kg k2 2293.2 kPa/m θm c0 + c1is kz 116.18 kN/m
Iy 0.6245 kg m2 n 1 – c0 0.2 rad dz 10 kN s/m
r 0.2794 m c 1.15 kPa c1 0.1 rad pw 100 kPa
b 0.25 m φ 0.5498 rad hw 0.1625 m
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Fig. 3. Wong-Reece model simulated with explicit (direct) application of the wheel-soil interaction forces

4.1 Acceleration test example

The Wong-Reece model was simulated with the single wheel model by following the aforementioned approaches,
for which a constant motor torque Ta = 150 Nm was applied in all cases, and the external pull was set to Fp = 0. We
differentiate between explicit and implicit force representation of the ground reactions, and we use different time-step
sizes (1 ms or 16 ms). Moreover, the effect of damping in the system was studied by adding damping to the vertical
resultant force component with a ratio η = dz/kz = 0.1 s, where kz and dz are the stiffness and damping coefficients [12].

The direct application of the forces (explicit representation) leads to the results shown in Fig. 3. Without damp-
ing the simulation becomes unstable, and the instability is slightly stronger for larger time-step sizes. The simulation
becomes stable when damping is added to the vertical dynamics, but small high-frequency oscillations may still be
present at the beginning of the motion. These are filtered out (aliased) when larger time steps are used. These results
show that the semi-empirical Wong-Reece model is not appropriate for dynamic simulations in its original form, be-
cause the steady state assumption leaves damping out of the model, which needs to be reintroduced in order to simulate
a system under some dynamic conditions.

In the results shown in Fig. 4 the ground reactions are applied through constraint forces (implicit representation).
The undamped model at 1 ms still shows an unstable behaviour. However, increasing the step size to 16 ms makes the
simulation more stable due to the implicit nature of the constraint forces. Moreover, adding damping to the system
helps to reduce the oscillations at the beginning. There was no regularization applied in these cases, and the effect of
the regularization on the system dynamics is discussed below.

4.2 Steady state test example

To make the system reach a steady state (i.e., constant velocity), a constant pull Fp was applied throughout the
simulation, and the torque applied to the wheel was kept constant at the beginning, while after reaching a certain
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Fig. 6. Transient behaviour and steady state simulation of the torque equivalent cone index model using implicit force
representation with Tmax = 150 Nm and Fp = 150 N

angular velocity it was reduced according to the actuation law

Ta =


Tmax ωy 6 ωsat

Tmax

(
ωmax−ωy

ωmax−ωsat

)
if ωy ∈ (ωsat,ωmax)

0 ωy > ωmax

(19)

where Tmax is the torque applied to the wheel at the beginning of the simulation, ωsat = 30 rad/s is the angular velocity
from which the applied torque starts to decrease, and ωmax = 50 rad/s is the maximum velocity from which no torque is
applied. In addition, all the simulations were carried out using the implicit representation of forces (constraint-based)
in order to assess the effect of the regularization on the system dynamics.

Figure 5 shows the results with the force equivalent cone index model, where the initial torque was set to Tmax =
250 Nm, and the pull was Fp = 250 N. As it can be seen, the system reaches a steady state, and so the forces and
velocities remain constant at the end of the simulation. Moreover, the relation between the drawbar pull and the slip is
satisfied when the steady state is reached. The non-regularized formulation uses uR = 0, and the force bounds are set
to the desired steady state force, i.e., λ U = −λ L = |λ D|. Whereas, the regularized formulation uses uR = 0, the force
bounds are set to the maximum traction force (i.e., slip ratio is = 1), and the damping coefficient defined in Eq. (17) is
b = λ D/uk, which acts as an adaptive damping.

Substantial differences between regularized and non-regularized forces can be appreciated at the beginning of the
simulation. Without regularization, the slip ratio increases up to large slip values, and later, it is reduced until the
system reaches the steady state. On the other hand, with constraint regularization, the slip ratio increases from zero
until the force that is applied matches the desired force, then the torque is reduced until the steady state is reached. Both
simulations reach the same steady state, but with different dynamic behaviour. To be able discuss the accuracy of these
models in dynamic simulations, and determine the one that better captures the wheel-soil interaction, experimental data
would be needed.

Furthermore, other conditions with lower applied torque and pull, Tmax = 150 N and Fp = 150 N, were analysed
using the torque equivalent cone index model, see Fig. 6. It is shown that simulating this system without regularization
can lead to strong oscillations before reaching a steady state. Such oscillations are very much apparent for the ground
reaction forces but less significant for the velocities. The regularization solves this problem, by adding the adaptive
damping coefficient d, and also by increasing the force bounds to better approximate the traction force for higher slip
ratios. This allows the traction force to increase when the wheel starts to move and therefore it helps to avoid the initial
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large variations in the slip observed with the non-regularized model.
It is worth mentioning that the simulations in Figs. 5 and 6 were performed with both the force and torque equiv-

alent models of the cone index. These to models use a different set of force components, as discussed in Section 2.
However, they represent the same system of forces acting on the wheel, and so the motion of the system turns out to be
the same in both cases.

Finally, the Wong-Reece model was simulated with the same input values, Tmax = 150 N and Fp = 150 N. The
corresponding results are shown in Fig. 7. Here, the upper and lower bounds of the constraint forces λ U and λ L are
defined by the desired force in both cases, that is why the slip ratio increases up to is = 1 at the beginning. Even
though the input forces are the same as in the previous simulation with the cone index, the soil properties are different,
therefore giving different results. The regularized implementation does not differ much from the non-regularized one,
and both reach the exact same steady state.

5. Conclusions

The modelling considerations on the wheel-soil interaction has an effect on the dynamic behaviour of vehicle
systems. This may be important in simulation where the state of the system is constantly changing. Furthermore,
different approaches can be followed to apply the ground reaction forces on the wheel: explicit and implicit. The
explicit force representation might become unstable if no damping is added to the model. On the other hand, implicit
representations lead to more robust simulations, especially in dynamic simulations where a steady state is not reached.
A detailed case study was used to show how these formulations perform in the simulation of a quarter-vehicle model.
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