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Abstract

Simulation of wheel-ground and vehicle-ground interactions is very important in many applications. Achieving
accuracy and efficiency is challenging for both soft and hard terrains. This is not only because of the simulation and
numerical challenges, but also due to the questionable nature of the terrain models. For example, the most widely used
terramechanics model is not compatible with dynamic models and simulation. It is not a representative constitutive
relation for a full range of dynamic conditions and applications. In general, the selection and development of the proper
constitutive model and the parameterization of the ground properties are very challenging. We have been developing a
unified framework for general wheel-ground interaction which can be used with whichever constitutive model and pa-
rameterization is selected and deemed to be representative for the particular application considered. The framework is
based on a complementarity formulation and also uses the concept of kinematic constitutive relations, beside the other
known concepts for modelling and parameterizing the soil properties. The framework makes it possible to consider
the appropriate modelling of the terrain for a broad range of dynamic behaviours and simulation conditions. We will
illustrate the material with several examples for off-road conditions.

Keywords: wheel-ground interaction, dynamic models and simulation, complementarity formulation

1. Introduction and Dynamics Modelling

The mechanics of a vehicle moving on some terrain can generally be represented with a finite degree of freedom
model based on n generalized velocity components, collected in array v, which describe the velocity field of the system,
and the related configuration level parameterization using p generalized coordinates, given in array q. In general, p≥ n.
The general dynamics formulation for such a model can be given as

Mv̇+ c = f+ fc + fg (1)

where M is the n×n mass matrix, c is the n×1 array of Coriolis and centrifugal terms, the n×1 array fc represents the
generalized interaction forces among the elements of the vehicle model, fg contains the n generalized force components
that represent the forces and moments transmitted from the ground to the vehicle through the wheel-ground contacts,
and f includes the representation of any other force acting on the system elements.

A discrete-time formulation can also be derived from the above for the velocities considering a finite difference
approximation for the accelerations. This can be accomplished using the first-order approximation

v̇ =
v+−v

h
(2)
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Figure 1: Wheel-terrain interaction forces
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Figure 2: Slip ratio

where h is the time-step size. The superscript “+” denotes the unknown variables of the current step, and the variables
without superscript are known, computed in the previous step. It can be shown that only such first-order approximations
would work for more complex cases involving contacts and friction.

This above representation can correspond to different model forms depending on how the interactions among
the vehicle model elements and related forces fc are represented. Commonly these interactions are represented using
bilateral constraints, i.e., various types of joints, representing the structural topology of the vehicle. In this case, these
constraints may already be implicitly embedded in the above model and the n generalized velocities associated with the
model represent the minimum number of degrees of freedom with respect to these bilateral constraints. In that case,
the related interaction forces are also eliminated and fc ≡ 0. The other possible form for these structural constraints
is that the related constraint forces are explicitly included and the constraints are added to the model with kinematic
equations that can be compactly written as

Bv̇+ Ḃv = 0 (3)

and fc = BTβ where β represents the reaction forces/moments transmitted in the joints. These equations can also be
discretized using Eq. (2). Even if these constraints and related reactions are considered explicitly in the formulation,
there are various possible ways to handle them.

The more challenging aspect is the consideration of the interactions due to the wheel-ground contacts, represented
by fg. The resultant interaction force and moment components transmitted from the ground to each wheel can be repre-
sented by a 6×1 array λi with i = 1, ...,s, where s is the number of wheels. Based on this observation, the generalized
force term can be further decomposed as fg = ATλ where λ=

[
λT

1 , ...λ
T
s
]T, and AT represents the transformation from

the resultant ground interaction forces and moments to the generalized force terms. At the same time A gives the
transformation from the generalized velocity components to the Cartesian velocity components that are used to inter-
pret each wheel-ground interaction, u =

[
uT

1 , ...u
T
s
]T, as Av = u. Using this transformation, the power of the ground

reaction forces can be expressed as Pg = uTλ= vTfg.
For each individual wheel the ground reactions contained in λi need to be further analyzed and interpreted. If

we use constitutive relations then those need to demonstrate and reflect the physical phenomena considered. With the
notation of Fig. 1, expressions for Fc, Ft, Fn, and Trr could be derived to represent the ground reaction forces directly
affecting longitudinal motion, which are defined below. If we consider the coordinate directions given in Fig. 1, we can
structure λλλ i so that the first three components define the resultant force and the second three give the resultant moment
about the selected reference point that is either the centre of the wheel or the contact point. In this case, the above
forces would enter as λi(1) = Ft−Fc, λi(3) = Fn, and λi(5) =−Trr−Ftr, where r is the radius of the wheel. The other
ground reaction components would come from the modelling of the lateral forces acting on the wheel.

The model for Fc, Ft, Fn, and Trr can be derived based on the terramechanics representation selected. For example,
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the well-known pressure-sinkage relationship proposed by Bekker [3]

σ =

(
kc

b
+ kφ

)
zn (4)

and its modified versions play a central role, and form the basis of most terramechanics formulations and approaches.
In this equation b is a geometric dimension depending on the experimental setup, kc, kφ , and n are parameters to be
identified based on experimental tests, and z is the sinkage. However, a formula like this does not necessarily mean a
valid constitutive relationship for all conditions. The physical meaning of the formula highly depends on the loading
and experimental conditions and the material that is being characterized.

The representation of the terrain reactions is also highly dependent on the consideration of slip. A general defini-
tion of the slip ratio is [2, 3, 7]

is =
ωr− vx

vmax
(5)

where vx is the longitudinal velocity of the centre of the wheel, ω is the angular velocity about its axis, r is its radius,
and

vmax =

{
ωr if |ωr|> |vx| (driving)
vx if |ωr|< |vx| (braking)

(6)

The slip ratio is ∈ [0,1] is used for driving wheels, whereas is ∈ [−1,0) is used for braking or towed wheels (see Fig. 2).
Nevertheless, a smoothing function can be used when velocities are very low, because the slip is not defined when the
wheel is stopped. Therefore, the smooth slip can be defined as

is =
ωr− vx

vmax

(
1− e

− v2
max

v2
min

)
(7)

where vmin can be a small velocity compared to the normal operational velocity of the vehicle [1].
This representation of the slip ratio and generally the basic interpretations of the terramechanics derivations do not

make it possible to directly use the force and torque formulas as constitutive relations in the dynamics formulations. The
formulas can be used through a constraint based method where the explicit expressions for the forces and torques are
considered together with constraints on the related velocity components. In this way, the effect of the ground reactions
are considered through constraints, and the formulas give the interpretations of the set-valued forces associated with
the constraints. For example, if we consider that f can represent any of the above force components and v f is the
related velocity then such a constraint relationship with the associated set-valued forces can be given as

f =


+ f̄ if v+f 6 0
∈ [− f̄ ,+ f̄ ] if v+f = 0
− f̄ if v+f > 0

(8)

where f̄ is the magnitude of such a force and can be interpreted based on terramechanics formulas.
This approach will make it possible to properly model the ground reactions in the dynamics model for a broad

range of operating conditions including the cases of zero slip and low wheel velocity. This representation of the
wheel-terrain interaction together with the dynamics equations, described by Eqs. (1) and (2), produce a mathematical
model in the form of a mixed linear complementarity problem (MLCP), that can be handled with various numerical
techniques.

2. Wong-Reece Model

The model proposed by Wong and Reece [2], which is an extension of the model proposed by Bekker [3], char-
acterizes the normal and shear stress distributions at the wheel-terrain contact interface. Therefore, the resultant forces
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and moments applied to the wheel can be calculated as

Fn =
∫

S
(σz + τz)dS (9)

Ft =
∫

S
τxdS (10)

Fc =
∫

S
σxdS (11)

Trr =
∫

S
r(τ− τx)dS (12)

where σx and σz are the vertical and longitudinal components of the normal stress σ , respectively; and τx and τz are
the vertical and longitudinal components of the shear stress τ , respectively.

The definition of the normal and shear stresses depend on the model used, however a general expression in terms
of the angle about the wheel are

σ =

(
kc

b
+ kφ

)
Rn (cosθw− cosθ1) (13)

τ = (c+σ tanφ)
(

1− e−
jd

Kd

)
(14)

where θ1 is the entrance angle, θw is a function of the exit angle θ2 and the slip ratio, c is the cohesion stress, φ is the
angle of internal shearing resistance of the terrain, Kd is the shear deformation, and jd is the shear displacement [4].

3. Cone Index Model

An alternative possibility to characterize traction capabilities is based on the cone index. This has been used in
various areas for mobility assessment and modelling [5, 6]. The advantages of this approach include the simplicity of
the testing needed to obtain the cone index, and also the availability of databases and information for various different
terrains. Here we describe a method of how to include the cone index based representation in the dynamics modelling
and simulation framework.

The cone index model estimates the pull generated by a wheel and the applied torque necessary to drive it on
different kinds of soil, given steady state conditions. The soil mechanical properties are characterized by the cone
index, ci, which is related to the soil strength and is a value obtained empirically using a cone-shaped penetrometer.

The gross thrust produced by the vehicle is assumed to be proportional to the torque applied to the wheel in steady
state, but here, in the general dynamic case, it is considered as the traction force, Ft, coming from the shear stress
at the contact interface and applied at the lowest point of the wheel. On the other hand, the motion resistance takes
into account the effect of the compaction resistance force and the rolling resistant moment, and it is considered as
a horizontal force, Fc, applied at the centre of the wheel. Therefore, the rolling resistant moment Trr is not directly
considered in this model.

Therefore, in steady state, the following equation gives the net pull (or drawbar pull), Fp, generated by the wheel

Ft =
Ta

r
= Fp +Fc (15)

where Ta is the torque applied to the wheel in steady state, and r is the effective radius of the wheel. In the transient
phase and taking into account the inertia effect of the wheel, the resultant force applied to the wheel in the longitudinal
direction is

Ft−Fp−Fc = mv̇x (16)

and the resultant moment is
Ta−Ftr = Iyω̇ (17)

where m is the mass of the wheel and Iy is the moment of inertia.
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The value of these forces depend on the mobility number, a dimensionless parameter, which is defined by Brix-
ius [7] for bias ply tires operating in cohesive-frictional soil as

bm =

(
ciDb
Fn

)
1+5 δ

H

1+3 b
D

(18)

where D = 2r is the wheel diameter, b is the wheel width, H is the tire section height, and δ is the tire deflection. The
gross thrust is defined by the model in terms of the slip ratio, so that the friction coefficient (or thrust ratio) is

µ(is) =
Ft

Fn
= 0.88

(
1− e−0.1bm

)(
1− e−7.5is

)
+0.04 (19)

and the motion resistance ratio is
γ(is) =

Fc

Fn
=

1.0
bm

+
0.5is√

bm
+0.04 (20)

3.1 Set-Valued Force Laws

The normal contact force can be defined in terms of the sinkage as

Fn = knz+ cnż (21)

where kn and cn are the stiffness and damping coefficients, respectively. Since the cone index model only determines
the forces associated with the longitudinal dynamics of the vehicle, the Wong-Reece model can be used for the vertical
dynamics, and we thus define the related parameters as proposed in [1]

kn =
FWR

n

z
and cn = ηnkn (22)

where FWR
n is computed using the Wong-Reece model (see Eq. (9)), and ηn is a small positive real number.

Set-valued force laws can be defined for the traction force and resistance force, so that

F+
t


=+Ft if v+t 6 0
∈ [−Ft,+Ft] if v+t = 0
=−Ft if v+t > 0

(23)

and

F+
c


=+Fc if v+x 6 0
∈ [−Fc,+Fc] if v+x = 0
=−Fc if v+x > 0

(24)

where Ft = µFn and Fc = γFn are the traction force and resistance force according to the cone index model.
However, the traction force can be better approximated about the current state using a linear regularization of the

constraint force, or global regularization (see Fig. 3), which can be defined as

F+
t =−ctv+t (25)

where the viscous damping coefficient

ct =
Ft

vt
(26)

Moreover, a more detailed approximation can be done via a linearization about the current state, or local regular-
ization (see Fig. 3), so that the change of the force is linear with respect to the change in the sliding velocity. Therefore,
the force can be expressed as

F+
t = Ft− ct

(
v+t − vt

)
(27)
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Figure 4: Simulation result of a single wheel model

where ct is the viscous coefficient that regularizes the force by a linearization of the curve representing the friction
coefficient µ(is). Considering that the slip ratio is given as is =− vt

vmax
, a viscous damping coefficient can be defined as

ct =
Fn

vmax

dµ
dis

∣∣∣∣
∗

(28)

where dµ
dis

∣∣∣
∗

is the slope of the tangent at the current slip ratio value, µ∗ = µ(i∗s ).
Therefore, the set-valued law for the traction force can be defined as

F+
t =


Fup

t if w+
t 6 0

Ft− ct
(
v+t − vt

)
if w+

t = 0

F lo
t if w+

t > 0

(29)

where Fup
t and F lo

t are the upper and lower bounds, respectively, which can be taken as ±Ft. The slack variable of the
MCLP associated with the friction force bounds F+

t ∈ [F lo
t ,Fup

t ] can be defined as

w+
t = v+t + εthF+

t − (vt + εthFt) (30)

and the regularization term is εt =
1

cth
, which is generally a small value.

4. Examples

4.1 Single Wheel Test

To verify the novel formulation proposed for the cone index model, a series of simulations have been performed
with a quarter vehicle model. The longitudinal dynamics of the vehicle and its behaviour have been tested under some
conditions for both transient and steady states. Table 1 shows the system and tire model parameters. First, a driving
torque is applied to the wheel, which increases linearly from Ta = 0 to Ta = 600Nm for the first 10s of simulation, and
then it remains at Ta = 600Nm for the next 10s until the system reaches the steady state. An external pull that increases
with the velocity is applied to the vehicle, so that a steady state is possible, as can be seen in Fig. 5.
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Figure 5: Quarter vehicle simulation results forces (top) and velocities (bottom). Acceleration from rest applying an
incremental torque from 0 to 600Nm in 10s

Vehicle Properties
Vehicle Mass m 1000 kg
Wheel Inertia Iy 6 kg m2

Wheel Diameter D 0.762 m
Wheel Width b 0.2 m
Section Height H 0.14 m
Tire Pressure p 2 bar
Contact Model
Cone Index ci 400 kN/m2

Table 1: Parameters of a quarter vehicle model
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Figure 6: Full vehicle model consisting of 45 rigid bodies

The three different regularized constraint approaches have been used and all of them give similar behaviour. How-
ever, the non-regularized model presents some oscillations for small slip ratio compared to the others. This is because
the constraint alone is not capable of approximating the steady state curve properly when the traction force increases
rapidly, as shown in Fig. 4. Still, it is noteworthy that the simulation reaches the same steady state both with and
without the use of regularization. As mentioned above, the cone index model describes the system dynamics in steady
state, but it does not capture the full range of dynamic conditions of the wheel-terrain interaction.

4.2 Full Vehicle Test

The simulation of a full vehicle model has been performed in order to verify the tire model under realistic driving
conditions (see Fig. 6). The data corresponding to the model with global regularization are shown in Fig. 7. The
vehicle has been driven on a flat terrain at full throttle for 10s with a change of gears after 5s and reaching a steady
state, where the velocity of the vehicle is vx = 19.1km/h. This example shows how the proposed tire model based on
the cone index is able to maintain a steady state in complex situations such as this one and also capture the transient
phase necessary to reach it.

5. Conclusions

In this paper we discussed elements of a framework that can be used for dynamic simulation of vehicle-terrain
systems for a broad range of conditions. It relies on a constraint-based complementarity formulation where the ground
reactions are considered together with their complementary kinematic variables to completely define the models of
wheel-terrain interactions for a full range of slip. This framework can include various types of wheel-soil and tire
models. As a completely novel element, we have shown how soft soil models based on the cone index can be incor-
porated in dynamic simulation using this modelling framework. Moreover, we also presented numerical results for the
simulation of a full vehicle. The proposed approach makes it possible to use these models for challenging operating
conditions, such as the transient dynamics during starting, accelerating and braking.
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