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ABSTRACT
Simulation of large-scale multibody systems with unilateral

contacts requires formulations with which good computational
performance can be achieved. The availability of many solver
algorithms for Linear Complementarity Problems (LCP) makes
the LCP-based formulations a good candidate for this. How-
ever, considering friction in contacts asks for new friction mod-
els compatible with this kind of formulations. Here, a new, reg-
ularized friction model is presented to approximate the Coulomb
model, which allows to formulate the multibody system dynamics
as a LCP with bounds. Moreover, a bristle approach is used to
approximate the stiction force, so that it improves the numerical
behaviour of the system and makes it able to handle redundancy
coming from the friction interfaces. Several examples using a
3D wheel model has been carried out, and the proposed friction
model shows a better approximation of the Coulomb model com-
pared to other LCP-based formulations.

INTRODUCTION
The simulation of multibody systems with contacts presents

some well-known challenges, especially when it involves fric-
tional contacts. Moreover, dealing with large systems and many

contacts makes it more difficult to achieve good simulation per-
formance. Several formulations have been proposed in the form
of Linear Complementarity Problems (LCP), for which several
direct or iterative solution algorithms are available.

LCP formulations expressed in the acceleration level were
proposed in the literature [1, 2], but they are not guaranteed to
always have a solution. This was the motivation to propose LCP
formulations at the velocity-level, initially proposed by Anitescu
and Potra [3] where time-stepping methods are incorporated in
the dynamic formulation [4]. Such a formulation was proven to
always have a solution [3], and hence, thus far it has been widely
used for contact dynamics of multibody systems [5–7].

Generally, in velocity-level formulations penetration be-
tween the interacting bodies can happen. As an alternative for-
mulation, the LCP can be expressed at the position-level [8].
Such a formulation can guarantee that no penetration occurs by
the position-level constraint imposition, though allowable mo-
tion of the interacting bodies can be unrealistically restricted [9].

All these formulations rely on the polygonal approximation
of the Coulomb friction cone, so that the resulting formulation
is a mixed LCP. On the other hand, Lacoursiere [10] proposed
the box approximation which allows to formulate a LCP with
bounds; the most general formulation for a LCP.
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To solve a LCP, a well-known category of approaches is
based on the symplex methods, which are known as the direct or
pivoting methods as well. Various pivoting algorithms are avail-
able for this purpose, such as the one proposed by Júdice and
Pires [11]. Direct methods are usually used when accurate and
robust simulations are required and enough computational time
is available.

Additionally, with the aim of improving the static behaviour
of the Coulomb model, several authors [12–15] have proposed
friction models using the bristle approach. Essentially, the sur-
face asperities are modelled with flexible bristles, so that a consti-
tutive relationship is used to approximate the static friction force.

Some of these so-called dynamic models [12, 15] are very
detailed, and its implementation in large-scale multibody system
has not yet been done successfully. However, a simpler model
was proposed by Liang et al. [13], an extension to contact in 3-
dimensional space of the model by Haessig and Friedland [14].
There, a linear viscous-elastic element is used to define the stic-
tion force.

In this work, a new regularized friction model is presented to
approximate the Coulomb model. The static force is regularized
using a bristle model, while the kinetic force is regularized with
a hybrid approach between dry and viscous friction. This allows
for formulating the dynamics model of a multibody system as a
mixed LCP with bounds. The dynamic equations are formulated
at the velocity-level, so that the velocities are the main variables
together with the constraint and friction forces.

MULTIBODY SYSTEM DYNAMICS
Let q be the p× 1 array of generalized coordinates of a

multibody system. A set of n generalized velocities v is defined,
such that q̇ = Γv, where Γ(q, t) is the p×n transformation ma-
trix. With this representation of the system, the dynamic equa-
tions are

Mv̇+ c = fapp + fbilat + fcont + ffric (1)

where M(q) is the n× n mass matrix, c(q,v) is the n× 1 array
containing the Coriolis and centrifugal terms, fapp is the general-
ized applied force, fbilat and fcont are the generalized bilateral and
unilateral constraint forces, respectively, and ffric is the general-
ized friction force.

The m bilateral constraints (holonomic and linear non-
holonomic) are defined at the velocity level as

u = Av (2)

where A(q) is the m×n constraint Jacobian matrix, and u(q, t) is
a m×1 array of given functions, which usually are equal to zero.

Then, the generalized bilateral constraint force is fbilat = ATλ,
where λ is the m×1 array of Lagrange multipliers.

For the r contacts, i.e., unilateral constraints, the gap func-
tions that define the distance between contacting surfaces are ar-
ranged into the array Φ(q)≥ 0, so the normal separation velocity
can be expressed as

Φ̇= Nv (3)

where N(q) is the r×n contact Jacobian matrix. The generalized
contact force is fcont = NTλN , where λN contains the r normal
forces, which will be defined below.

The tangent plane of each contact point is characterized us-
ing two orthogonal directions, in which the components of the
sliding velocity at the contact points can be expressed as

vT = Dv (4)

where D(q) is the 2r× n friction Jacobian matrix. Then, the
generalized friction force is ffric = DTλT , where λT is the array
that contains the 2r components of the friction forces, which will
be defined below.

Discrete-Time Representation
The velocity-level formulation is achieved by means of a fi-

nite difference approximation of the acceleration as following

v̇+ =
v(t +h)−v(t)

h
=

v+−v
h

(5)

where the superscript + is used for the unknown variables in the
time-step, so that v+ and v̇+ contain the unknown generalized
velocities and accelerations respectively, and h is the time-step
size.

The generalized accelerations are found in the dynamic
equations

Mv̇++ c = fapp + f+bilat + f+cont + f+fric (6)

where the generalized forces f+ are defined implicitly using the
unknown velocities v+; while the other unspecified elements,
such as the mass matrix M, and c and fapp vectors, are com-
puted explicitly using the known mechanical state q and v. This
notation for the known and unknown variables is kept along the
paper.

On the other hand, the generalized coordinates are updated
explicitly using the known q and v as following

q+ = q+hΓv (7)
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This integration together with the Eqn. (5) give to this formula-
tion a semi-implicit approach, so that the energy drift – due to the
numerical integration – is reduced, compared to a fully implicit
formulation.

FRICTION MODEL
The Coulomb model has proven to be very representative

for the friction in contacts. However, its use in large system sim-
ulation makes it hard to achieve good simulation performance.
To overcome this, a regularized friction model is proposed to
approximate the Coulomb model, which distinguishes between
static and kinetic phases.

In this section, the formulation is derived for one contact
point in order to lighten the notation. Therefore, the sliding ve-
locity and the friction force are

vT = Dv =

[
vT 1
vT 2

]
and λT =

[
λT 1
λT 2

]
(8)

Static Friction Model
The non-smoothness that the Coulomb model introduces

about zero sliding velocity can be reduced by many different
ways, such as velocity regularization of the stiction force. Here,
this is achieved using a bristle approach, which defines a stiff-
ness kT in the tangential directions, so that the stiction force is

λT =−kT s (9)

where s contains the two components of the average bristle de-
flection (or deflection), which represents the elastic deformation
of the contact interface.

The deflection cannot be computed using the configuration
of the system, because such a quantity depends on “the path” that
the system has followed. Therefore, the sliding velocity vT needs
to be integrated, so that the deflection can be expressed in terms
of the generalized velocities as

s+ = s+hv+T = s+hDv+ (10)

The friction force can also be expressed in terms of the gen-
eralized velocities,

λ+
T =−kT s+ =−kT s−hkT Dv+ = λT −hkT Dv+ (11)

where λT =−kT s is the friction force of the previous time-step.
Equation (11) shows how the bristle deflection is not necessary
to define the friction force, because all the needed information

regarding the path followed by the system is contained in the
friction force.

However, this condition can only be applied in case that
the friction force does not exceed the maximum stiction force.
Therefore, lower and upper bounds λT and λT are defined for
the components of the friction force λ+

T as following[
−µλN
−µλN

]
= λT ≤ λ+

T ≤ λT =

[
+µλN
+µλN

]
(12)

where µ is the friction coefficient, and λN is the normal contact
force resulting from the previous time-step. Nevertheless, a few
iterations can be performed in order to make the boundaries tend
to ±µλ

+
N [10].

Additionally, in order to improve the accuracy of the stick-
slip transition, the basis defined in the tangent plane can be mod-
ified, so that the previous friction force λT is aligned with one
direction

λT =

[
−λT 1

0

]
(13)

Then, the generalized friction force can be expressed as follows

ffric = DTλT = DTRλ̂T = D̂Tλ̂T (14)

where λ̂T = RTλT contains the components of the friction force
using any other basis, and R is the 2× 2 orthogonal change of
basis matrix.

This procedure changes the boundary enforcement, so that
the boundaries in Eqn. (12) are applied to λT , instead of any
other arbitrary λ̂T . Figure 1 shows the tangent plane with the
friction force and the two possible boundaries for it, so it can be
seen that the closest slick-slip transition to the force λT is

λT =

[
−µλN

0

]
(15)

Kinetic Friction Model
The kinetic friction model uses the direction of the sliding

velocity (or sliding direction) to define the basis in the tangent
plane, so that the sliding velocity resulting from the previous
time-step has only one non-zero component:

vT = Dv =

[
vT 1
0

]
(16)

As seen above, this representation of the sliding velocity can
always be achieved by means of a change of basis, so that

vT = Rv̂T = RD̂v = Dv (17)
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FIGURE 1. STATIC FRICTION FORCE WITH LIMITS.

where v̂T = RTvT contains the components of the sliding veloc-
ity using any other orthogonal basis in the plane, and R is the
2×2 change of basis matrix.

The same boundaries in Eqn. (12) are used for the two com-
ponents of the friction force λT . The component of the fric-
tion force along the sliding direction is computed similarly to
Eqn. (11)

λ
+
T 1 =−µλN −hkT v+T 1 (18)

which will only take values different from λT 1 = −µλN in case
of sliding reversion, i.e., v+T 1 < 0.

On the other hand, the component of the friction force along
the transversal direction is regularized using the sliding velocity
as following

λ
+
T 2 =−bµ v+T 2 (19)

where v+T 2 is the sliding velocity component along the transversal
direction, and

bµ =
µλN

vT 1
(20)

is the drift viscous coefficient which is updated every time-step.
This regularized model with a hybrid approach between dry

and viscous friction aims to reduce the misalignment between the
friction force λ+

T and the silding velocity v+T , which happens at
some degree in all LCP based formulations [3, 8, 10].

1

2

vT

T

N
b vT2

vT2 vT1 vT1

new sliding 
direction

limits of 
the force

FIGURE 2. KINETIC FRICTION MODEL.

Basically, any deviation of the sliding velocity produced by
the component in the transversal direction v+T 2 is compensated
by the regularitzation in Eqn. (19), so that there is not misalign-
ment if the velocity component in the sliding direction remains
constant, see Fig. 2.

LCP FORMULATION
The main variables of the LCP are the generalized veloci-

ties v+, together with the constraint and friction forces λ+, λ+
N

and λ+
T . Therefore, Eqn. (6) can be expressed in terms of these

variables as follows

Mv+−AThλ+−NThλ+
N −DThλ+

T = hf0 (21)

where f0 = fapp− c+Mvh−1 is known. As already mentioned
above, all the elements without the + superscript are computed
using the known mechanical state (q and v) of the system.

Regarding the constraints, and according to Eqn. (2), the
generalized velocities v+ have to satisfy

u = Av+ (22)

where u(q, t) is known. For the unilateral constraints, the normal
separation velocity is defined using Eqn. (3) as

Φ̇
+
= Nv+ ≥ 0 (23)

Due to its unilateral nature, normal forces λN cannot be neg-
ative, and have to be zero when separation occurs. Therefore, the
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following complementarity condition is defined

Φ
+
i

{
= 0 if λ

+
Ni > 0

≥ 0 if λ
+
Ni = 0

∀i = 1 . . .r (24)

The static and kinetic friction models described in
Eqns. (11), (18) and (19) can be unified as following

Dv++ C̃T hλ+
T − C̃T hλ̃T = σ+ (25)

where C̃T = diag
(
C̃T 1 · · · C̃Tr

)
is a 2r×2r diagonal matrix and

λ̃T =
[
λ̃

T
T 1 · · · λ̃

T
Tr

]T
is a 2r× 1 array, which depend on the

model used, so for the static friction model,

C̃Ti =

[
k−1

Ti
k−1

Ti

]
h−2 and λ̃Ti = λTi (26)

and for the kinetic friction model,

C̃Ti =

[
k−1

Ti
hb−1

µi

]
h−2 and λ̃Ti =

[
−µiλNi

0

]
(27)

and σ+ =
[
σT

1 · · · σT
r
]T is the 2r× 1 array of slack variables

associated with the friction force λ+
T , which are defined with the

following complementarity condition

σ
+
i j


≤ 0 if λ

+
Ti j =+µiλNi

≥ 0 if λ
+
Ti j =−µiλNi

= 0 otherwise

∀ i = 1 . . .r
∀ j = 1,2 (28)

In order to avoid bad numerical behaviour, a small velocity
threshold vth is considered to distinguish between sticking and
sliding contact points, so that if the value of the sliding velocity
is under or equal to it, the static model is applied.

Moreover, this formulation can handle an infinite tangential
stiffness, i.e., kT →∞, which can give a better approximation of
the Coulomb model. In such a case,

C̃Ti = 0 and C̃Ti =

[
0

h−1b−1
µi

]
(29)

for the static and kinetic friction models, respectively.

Finally, Equations (21), (22), (23) and (25) can be expressed
in the following matrix form


M −AT −NT −DT

A 0 0 0
N 0 0 0
D 0 0 C̃T




v+
hλ+

hλ+
N

hλ+
T

+

−hf0
−u
0

−C̃T hλ̃T

=


0
0
Φ̇

+

σ+

 (30)

which is known as Mixed Linear Complementarity Problem with
Bounds. This is the general formulation of a LCP; where some
variables have upper and lower bounds, and others are partially
or totally unbounded. As mentioned above, the bounds for the
main variables are

λ+
N ≥ 0 and λT ≤ λ+

T ≤ λT (31)

with the corresponding slack variables Φ̇+ and σ+. To solve it,
the pivoting algorithm proposed by Júdice and Pires [11] can be
used.

Regularizing the static friction force using a bristle approach
allows the system to cope with redundancy coming from the fric-
tion interfaces. As it can be seen in Eqn. (30), the lead matrix can
be full rank regardless of the rank of the friction force Jacobian
matrix D. Although velocity regularization of the stiction force
can solve the same problem, the sliding artifact does not appear
when the bristle model is used.

EXAMPLE
In order to assess the accuracy of this model, several sim-

ulations have been carried out. In this section, the results of a
representative example are shown and compared to other LCP-
based formulations: the polygonal approximation of the friction
cone [2,3,8] using the formulation proposed by Anitescu and Po-
tra [3], and the box friction model proposed by Lacoursiere [10].
The ideal Coulomb friction model has also been used, so that it
can serve as a reference.

A certain initial conditions have been given to the 3D model
of a wheel with one single contact point with the ground, so that
it slides for the first two seconds, see Fig. 3 and Tab. 1. The
objective is to show how the kinetic friction force modelling af-
fects the system behaviour, which is one of the main features
of the model presented here. In all the simulations, a time-step
frequency of 1kHz is used, except for the ideal Coulomb model
where it is 10kHz.

Figure 4 shows the normalized value of the friction force,
i.e., its value with respect to µλN . As it can be seen, the reg-
ularized model gives a better approximation of the Coulomb
model compared to the other models, especially during the slid-
ing phase, where it keeps the value close to µλN . The normalized
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FIGURE 3. 3D MODEL OF A WHEEL.
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FIGURE 4. NORMALIZED VALUE OF THE FRICTION FORCE.

root-mean-square deviation with respect to the Coulomb model
is 1.67% for the regularized model, compared with 3.76% for the
polygonal model, and 9.70% for the box model.

Figure 5.a shows the relative error in the position of the cen-
tre of the wheel, normalized using the distance from the starting
point, and Fig. 5.b shows the error in the mechanical energy. As
it can be seen, both errors are significantly reduced when using
the proposed regularized model.

Moreover, the misalignment between the friction force and
the sliding velocity, which is shown in Fig. 5.c, is also reduced.
The root-mean-square deviation for the regularized model is
0.7◦, while for the polygonal and box models are 14.0◦ and 12.6◦,
respectively.

In addition, these results suggest that the position is mainly
affected by the force misalignment, which is present in the two
other models. Even though the polygonal model presents a better

TABLE 1. SYSTEM PARAMETERS

Wheel

Radius R 0.5 m

Mass m 1 kg

Axial moment of inertia Ia 0.6 kg m2

Transversal moments of inertia It 0.3 kg m2

Contact Model

Friction coefficient µ 0.3

Tangential stiffness kT 1010 N m−1

Sliding velocity threshold vth 0.01 m s−1

Initial Condition

Contact distance (gap function) Φ 0 m

Orientation with Euler angles*

1st (vertical axis) ψ 0◦

2nd (horizontal diameter) θ 20◦

3rd (wheel axis) φ 0◦

Velocity of the COM ẋ 6 m s−1

Angular velocity ψ̇ −2 rad s−1

Other generalized velocities 0

*The wheel axis is parallel to the y axis for ψ = θ = φ = 0◦.

approximation of the force value compared to the box model,
both have roughly the same position error (see Fig. 5.a).

However, the energy of the system seems to be also sensitive
to the fluctuations of the force value. The polygonal model shows
less energy error than the box model, whereas the misalignment
is similar in both models.

CONCLUSIONS
LCP-based formulations have already proved to be suitable

for the efficient simulation of multibody systems with large num-
ber of bodies and contacts. The addition of this new friction
model improves substantially the simulation accuracy.

The regularization of the kinetic friction force has shown a
better approximation of the Coulomb friction model compared
to other LCP-based formulations. Namely, the error in the fric-
tion force value and its misalignment with respect to the sliding
velocity have been considerably reduced.

The regularization of the static friction force using a bristle
approach has been incorporated in a LCP formulation, resulting
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FIGURE 5. POSITION, ENERGY AND MISALIGNMENT ER-
RORS, COMPARED TO THE COULOMB MODEL.

in a Mixed LCP with bounds. Considering compliance in the tan-
gential directions can handle redundancy coming from the fric-
tion interfaces. Although velocity regularization of the stiction
force can solve the same problem, the sliding artifact does not
appear when the bristle model is used.

It is worth noting that, as far as the authors know, the bristle
model has never been included in LCP formulations for multi-
body systems. These so-called dynamic friction models are usu-
ally very detailed and their implementation in large-scale multi-
body systems can result in a decrease in simulation performance.
They also include additional state variables (e.g., the bristle de-
flection), the evolution of which is governed by additional differ-
ential equations.

However, the formulation presented here overcomes this; it
exhibits the advantages of the bristle model, such as the position-
level regularization with a continuous transition of the static fric-
tion force; while, without the addition of other variables, its sim-
ulation performance is similar to the other LCP-based formula-
tions.
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