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ABSTRACT
Modeling multibody systems subject to unilateral contacts

and friction efficiently is challenging, and dynamic formulations
based on the mixed linear complementarity problem (MLCP) are
commonly used for this purpose. The accuracy of the MLCP
solution method can be evaluated by determining the error in-
troduced by it. In this paper, we find that commonly used MLCP
error measures suffer from unit inconsistency leading to the error
lacking any physical meaning. We propose a unit-consistent er-
ror measure which computes energy error components for each
constraint dependent on the inverse effective mass and compli-
ance. It is shown by means of a simple example that the unit con-
sistency issue does not occur using this proposed error measure.
Simulation results confirm that the error decreases with conver-
gence toward the solution. If a pivoting algorithm does not find
a solution of the MLCP due to an iteration limit, e.g. in real-time
simulations, choosing the result with the least error can reduce
the risk of simulation instabilities.

∗Address all correspondence to this author.

INTRODUCTION

There are numerous issues that make multibody dynamics
simulations with contacts and friction challenging. Many appli-
cations in engineering and related fields impose strict require-
ments on the computational time available for each time step and
on the accuracy of the simulation, such as in real-time simula-
tions. Accurate solutions and low computational time usually
cannot be obtained simultaneously. Contact in multibody sys-
tems can be modeled through unilateral constraints. This often
results in a dynamic formulation that can mathematically be de-
scribed as a linear complementarity problem (LCP) or mixed lin-
ear complementarity problem (MLCP). There is a wide range of
algorithms in the literature to solve LCPs and MLCPs, which
can be classified into two types: direct and iterative methods [1].
Generally, iterative solvers are computationally more efficient
than direct ones. Nevertheless, only direct solvers are able to
deliver the exact solution of the MLCP given enough computa-
tional time.

It is not an easy task to choose the solver that best suits the
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problem at hand, especially when there is a time constraint and
a solution with the desired tolerance cannot be found. In this
case, the simulation accuracy can be increased significantly if we
measure the error of all computed solutions throughout the solver
iterations and choose the solution with the least error. In this pa-
per, we introduce two commonly used error measures such as the
natural residual [2] and the Fischer-Burmeister function [3] and
show that these approaches do not take the nature of the model
into account and can suffer from physical inconsistency. Fur-
thermore, we present a unit-consistent energy error measure for
MLCP solvers that does not require any reference solution and
can be efficiently computed for every solver iteration in order to
improve simulation accuracy.

RELATED WORK
The mathematics literature contains many papers and books

about the theory of error bounds on the complementarity prob-
lem (CP), i.e. the general problem formulation containing the
LCP, MLCP and nonlinear complementarity problem (NCP).
Pang [2, 4] defines the natural residual as the componentwise
minimum between the CP solution vector and the slack vec-
tor. This residual can be used to measure the closeness of the
computed result to being a solution of the CP. Fukushima [3]
discusses several merit functions one of which is the Fischer-
Burmeister function. This function is defined by the compo-
nentwise difference between the `2-norm and the `1-norm of
two components of the solution and slack vector. The Fischer-
Burmeister merit function is commonly used to capture the error
in rigid body simulations [5, 6]. Lu and Trinkle [7] measure the
error in a potential solution using the Chen-Chen-Kanzow refor-
mulation function which also depends on the Fischer-Burmeister
function. Lacoursière et al. [8] introduce multiple quality metrics
which do not only measure the MLCP solver error but also the
penetration error as well as the error in the friction force magni-
tude and alignment. It is not in the scope of this present paper to
determine and evaluate the error in the dynamic formulation, it
measures the MLCP solver error only.

The great advantage of the presented residual and merit
functions for the CP is that the CP conditions are used to de-
termine the error in the computed result so that no reference so-
lution is required. Furthermore, the error can be computed rela-
tively inexpensively in every algorithm iteration. This is advan-
tageous because we can keep track of the solver error throughout
the iterations so that the solution with the least error can be cho-
sen in case the solver does not terminate due to an iteration limit.
However, these error functions have a major drawback if used
for mechanical problems. They do not take the physical nature
of the solution vector (forces or impulses) and the slack vector
(accelerations or velocities) into consideration. Thus, the com-
puted errors are unit inconsistent and have no physical meaning.

MULTIBODY DYNAMICS WITH CONTACT
Let us consider a multibody system with the generalized ve-

locities v∈R6m for m rigid bodies and the transformation Jv=w
that defines the constraint subspace where w ∈Rn represents the
velocities in that subspace and J ∈ Rn×6m is the constraint Jaco-
bian. The dynamic equations using a finite difference approxi-
mation for the generalized accelerations v̇≈ v+−v

h and constraint
regularization can be written as [9][

M −JT

J C

][
v+

hλλλ+

]
+

[
p

1
hΦΦΦ

]
=

[
0
w

]
(1)

where h is the time step size, v+ are the unknown velocities at the
end of the step, v are the known velocities at the beginning of the
step, M ∈ R6m×6m is the mass matrix, and p = Mv+hfa ∈ Rm

combines the momentum and impulse dependent on the gen-
eralized applied forces fa. The limits on the constraint reac-
tions λλλ+ ∈ Rn are specified by the nature of the constraint, e.g.
λ+

n ≥ 0 for a normal contact force, and λ
+
t ∈ [−µλn,+µλn] for

a friction force component if the box friction approximation is
used, where λn can be an estimate of the normal force from the
previous time step [9]. Moreover, the constraints can be reg-
ularized through representation of the reaction forces by con-
stitutive relations in implicit form, i.e. λ

+
i =−kiφ

+
i , where ki

is the constraint stiffness and φ
+
i is the constraint violation at

the end of the time step. This introduces the compliance ma-
trix C = diag{ 1

k1h2 , . . . ,
1

knh2 } ∈ Rn×n and the constraint violation

vector ΦΦΦ = [φ1, . . . ,φn]
T ∈ Rn. Note that the constraint violations

of the next time-step are approximated via a finite difference, so
that the constraint reactions are defined in terms of the unknown
velocities. This makes the constraint forces implicit and adds
damping to the system, which increases the stability of the for-
mulation.

Mixed Linear Complementarity Problem
The general form of the MLCP that needs to be solved at

each step is

Ax+b = w, (2)
0≤ u−x⊥ w− ≥ 0, (3)
0≤ x− lll ⊥ w+ ≥ 0, (4)

where A = JM−1JT +C is the lead matrix, b = JM−1p+ 1
hΦΦΦ

is called parameter vector, and the variables x = hλλλ+ ∈ [lll,u] are
the constraint impulses subject to lower and upper bounds lll and
u. The nonnegative components of the constraint-space veloc-
ity (also known as slack variables) w = w+−w− are comple-
mentary to the saturation of the lower and upper bounds, de-
noted by the operator ⊥. Therefore, the slack variable is posi-
tive (w+,i > 0) when the main variable xi is at the lower bound
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(xi = li). Likewise, the slack variable is negative (w−,i > 0) when
the main variable xi is at the upper bound (xi = ui).

Solver Algorithms
There are two main types of algorithms for solving an

MLCP: direct and indirect methods [1]. Direct methods, also
known as pivoting methods, try to determine the set of variables
that are at the upper or lower bound, or within the bounds. They
start with an initial guess for these index sets in order to solve for
the unknown variables. If the guess does not lead to a solution of
the MLCP, the index sets are modified by systematically swap-
ping variables from one set to another until a solution is reached.
Unfortunately, there is no guarantee that the result in an iteration
is closer to the solution than the previous result.

In contrast to direct methods, indirect or iterative methods
do not make assumptions on index sets nor solve directly for the
unknown variables. Instead, convergence is reached by improv-
ing the solution of the previous iteration so that the obtained so-
lution of the next iterate is closer than the previous if the solver is
convergent for the problem at hand. In order to solve the MLCP,
direct and iterative solution algorithms perform a series of itera-
tions and compute intermediate solutions, which satisfy Eq. (2)
so that the solver error occurs only in the conditions in Eqs. (3)
and (4).

EXISTING ERROR MEASURES
In the following sections, we present two functions that can

be used to measure the solver error per constraint based on the
MLCP solution x and slack variable w. If Eq. (2) is satisfied,
the variable xi represents the constraint reaction impulse, and its
slack variable wi represents the constraint velocity. However,
for an intermediate solution before the algorithm converges, the
feasibility of the impulses (xi ∈ [li,ui]) or the complementarity of
the slack variables may not be guaranteed.

Fischer-Burmeister Error Function
For the MLCP in Eqs. (2) to (4), two Fischer-Burmeister

error functions are introduced per constraint i [3, 10]

φFB,u,i = (ui− xi)+w−,i−
√
(ui− xi)

2 +w2
−,i,

φFB,l,i = (xi− li)+w+,i−
√
(xi− li)

2 +w2
+,i.

(5)

We take the maximum of the absolute values resulting from
Eq. (5) to obtain one error value for constraint i

δφFB,i = max
(
|φFB,l,i|, |φFB,u,i|

)
. (6)

Given δφFB,i, we can compute an error value for the entire sys-
tem of equations, called system error. The `1-norm of the com-
ponent vector δφφφ FB = [δφFB,1 . . .δφFB,n]

T
can be used to define

the system error as

δφFB = ||δφφφ FB||1 =
n

∑
i=1
|δφFB,i|. (7)

Natural Residual
Similar to the approach for the Fischer-Burmeister function,

we can introduce two natural residuals per constraint i for an
MLCP [2, 4]

φres,u,i = min(ui− xi,w−,i) ,

φres,l,i = min(xi− li,w+,i) ,
(8)

where the arguments in the minimum function represent the vari-
ables in the conditions in Eqs. (3) and (4). We define the error
of constraint i as the maximum of the absolute values of the two
functions in Eq. (8)

δφres,i = max
(
|φres,u,i|, |φres,l,i|

)
. (9)

The system error can then be defined using the `1-norm

δφres = ||δφφφ res||1 =
n

∑
i=1
|δφres,i|, (10)

where δφφφ res = [δφres,1 . . .δφres,n]
T

is the component vector com-
posed of the errors for all constraints in the system.

Unit Consistency Issues
The two error measures presented above are commonly used

in simulation of multibody systems with contact to estimate the
accuracy of the solver algorithm [10, 11]. However, these er-
ror measures have a significant shortcoming which is rarely dis-
cussed. The different physical nature of the constraint impulses x
and the constraint-space velocities w are not taken into account.
This can lead to unit inconsistencies in the Fischer-Burmeister
function. For example, if ui − xi and w−,i are simultaneously
nonzero, we add impulses expressed in [Ns] to velocities ex-
pressed in

[m
s

]
which leads to a sum in Eq. (5) without any phys-

ical meaning. Unit inconsistencies in the `1-norm of the natu-
ral residual can also occur if the components of δφφφ res contain
variables of mixed physical quantities, e.g. impulses expressed
in [Ns] and velocities expressed in

[m
s

]
. Furthermore, another
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type of unit inconsistency is possible when the constraint veloc-
ities w also represent angular velocities of rigid bodies. Then,
w is composed of a mix of point velocities in

[m
s

]
and angular

velocities in
[ 1

s

]
. There is no clear physical meaning of the `1-

norm of δφφφ res that mixes impulses, point velocities and angular
velocities. Even if all error is in the forces, i.e. the components of
δφφφ res carry exclusively force units, the effect of such force error
on the system motion is dependent on the mass of the constrained
bodies. For example, a relatively small force error of 10−1 N may
have a more significant impact on the motion of a light body than
a relatively large force error of 103 N on the motion of a heavy
body.

UNIT-CONSISTENT ERROR MEASURE
In this section, we present a novel error measure that defines

the solver error as a function of the MLCP solution vector x and
the slack vector w. This error measure is unit consistent in all the
critical scenarios outlined in the previous section, and it is based
on constraint error components expressed in energy units, which
allows us to easily combine and compare them.

Inverse Effective Mass of a Constraint
We consider a system of m rigid bodies connected by n bilat-

eral and unilateral constraints. The system mass matrix is given
by M∈R6m×6m and the system constraint Jacobian by J∈Rn×6m

where the Jacobian row Ji ∈ R1×6m corresponds to constraint i.
The effective mass meff,i associated with constraint i can be de-
fined as [12, 13]

meff,i =
1

JiM−1JT
i

. (11)

This definition of the effective mass is an approximation since
only the mass and inertia effects of directly adjacent bodies are
taken into consideration and no other constraints between these
bodies are regarded. For a long chain of bodies connected by
spherical joints, the effective mass of a constraint only contains
contributions of the two bodies which are linked to each other by
the constraint. For two bodies connected by multiple constraints,
e.g. a cube in contact with a plane, the effective mass of con-
straint 1 does not receive any contribution of constraint 2 even if
the same bodies are involved. These approximations have been
made to keep the computational cost low so that the solver error
can be computed in every iteration without significant impact on
the solver performance.

The MLCP lead matrix A for the box friction model is de-
fined as the sum of the inverse effective mass matrix JM−1JT

and the diagonal regularization matrix C. Then, any diagonal el-
ement aii of A is simply the sum of the inverse of the effective

mass meff,i and the element ci of C

aii =
1

meff,i
+ ci, (12)

where element ci is the compliance of constraint i. The ele-
ment aii combines the inverse of the effective mass with the
constraint compliance. It carries inverse mass units [kg−1]
if the translational motion is constrained or inverse inertia
units [(kg m2)−1] if the angular motion is restricted by con-
straint i. In the following sections, aii will simply be referred
to as inverse effective mass element and is given without any ad-
ditional computations as a diagonal element of A.

Energy Error Measure
Given a solution x of the MLCP problem in Eq. (2), the i-th

component can be decomposed into

xi = x0,i +δxu,i−δxl,i (13)

where the feasible component x0,i ∈ [li,ui]. The other compo-
nents are defined as

δxu,i = max(xi−ui,0) ,
δxl,i = max(li− xi,0) ,

(14)

which quantify violation of the upper and lower bounds, respec-
tively. On the other hand, the slack variable w = Ax+b is de-
composed in the two nonnegative components as

wi = w+,i−w−,i, (15)

where w+,i ≥ 0 and w−,i ≥ 0.
We define the upper impulse energy error δexu,i, the lower

impulse energy error δexl ,i, the positive velocity energy er-
ror δew+,i, and the negative velocity energy error δew−,i as

δexu,i =
1
2

aiiδx2
u,i, (16)

δexl ,i =
1
2

aiiδx2
l,i, (17)

δew+,i = min
(

1
2aii

w2
+,i,

1
2

aiiσ
2
l,i

)
, (18)

δew−,i = min
(

1
2aii

w2
−,i,

1
2

aiiσ
2
u,i

)
, (19)

where σu,i = ui− (x0,i−δxl,i) and σl,i = (x0,i +δxu,i)− li repre-
sent the saturation of the upper and lower bound, respectively.
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Then, we define the energy error per constraint i as the max-
imum of the four nonnegative energy error components δexu,i,
δexl ,i, δew+,i, and δew−,i

δei = max
(
δexu,i,δexl ,i,δew+,i,δew−,i

)
. (20)

Eq. (20) is always unit consistent since all components in the
maximum function are expressed in Joule.

Figures 1 and 2 illustrate isoline plots of the unit-consistent
energy error δei for a grid of constraint impulses −2 ≤ xi ≤ 2
and constraint-space velocities−2≤wi≤ 2. The thick solid blue
line represents zero error δei = 0 and the thin solid black lines
the corresponding value of δei . The error increases quadratically
along the dashed red lines. The slope of the dashed lines is given
by the tangent of the inverse effective mass element aii. Note that
infinitely many parallel dashed lines can be drawn.

Finally, the total error of the system can be defined as the
`1-norm

δe = ||δe||1 =
k

∑
i=1
|δei|, (21)

given a component vector δe = [δe1 . . .δen]
T

composed of the
constraint errors δei. We choose the `1-norm to simply add up
all energy constraint errors. The units are always consistent since
all components of δe carry energy units.

Computational Complexity This section outlines the
computational complexity of the error measure with respect to
the overall complexity of a direct solver. For direct solvers, the
MLCP lead matrix A is explicitly formed so that its diagonal ele-
ments aii are known [14]. Furthermore, all impulse and velocity
components xi and wi are already available since they need to
be verified to satisfy the bounds. Then, the components δxu,i,
δxl,i, w+,i, and w−,i are deduced using minimum and maximum
functions. The computations of δexu,i, δexl ,i, δew+,i, δew−,i, and
δei require a combination of floating point operations and min-
max function. This has to be done for n variables per iteration
and all variables have to be added together which leads to over-
all computational complexity of O(n). A direct solver requires
a matrix factorization of complexity O(n3) per iteration which
can be sped up to O(bn2) for banded matrices with bandwidth b.
Thus, the cost of the error measure computation is negligible for
the large problems.

Interpretation In Eqs. (16) and (17), the error in the im-
pulses δxu,i or δxl,i is transformed into the upper impulse energy
error δexu,i or the lower impulse energy error δexl ,i by multiplica-
tion with the inverse effective mass aii. In Eqs. (18) and (19), we

FIGURE 1. Energy error isolines for contact constraints given
aii = 1

[
kg−1] expressed in Joule. The error is zero on the thick solid

blue line and increases quadratically along the dashed red lines.

determine the positive velocity energy error δew+,i, and the neg-
ative velocity energy error δew−,i. These two error components
can only be nonzero if the constraint-space velocity wi is nonzero
so that either w−,i > 0 or w+,i > 0. According to Eqs. (3) and (4),
nonnegative sliding velocity components w+,i or w−,i are permit-
ted if the constraint impulse xi equals the lower or upper bound
li or ui, respectively. If the MLCP solver computes an impulse
greater than the upper bound ui, i.e. δxu,i > 0, or smaller than the
lower bound li, i.e. δxl,i > 0, then the impulse error is already de-
termined in δexu,i or δexl ,i and we do not need to consider δxu,i or
δxl,i in the computation of δew−,i or δew+,i, respectively. How-
ever, we do consider δxl,i and δxu,i in the bound saturations σu,i
and σl,i, respectively. Thus, δew+,i should be nonzero only if
w+,i > 0 and σl,i = (x0,i +δxu,i)− li > 0 simultaneously, e.g. if
a body in contact slides in positive direction and the friction im-
pulse is below the lower bound.

Let us assume that w+,i > 0 and σl,i > 0, then we need to
choose which of the two should be considered as the error. If
the positive residual velocity is large w+,i� 0 and the impulse is
close to the lower bound σl,i≈ 0, it is more likely that the impulse
should in fact be equal to the lower bound, i.e. σl,i = 0. This
means that a positive component w+,i would not be considered
as an error and the error is defined as { 1

2 aiiσ
2
l,i}. Therefore, it is

preferred to choose the minimum of { 1
2 aiiσ

2
l,i} and { 1

2aii
w2
+,i} to

define the energy error component δew+,i in Eq. (18).
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FIGURE 2. Energy error isolines for friction given aii = 1
[
kg−1] ex-

pressed in Joule. The error is zero on the thick solid blue line and in-
creases quadratically along the dashed red lines.

RESULTS
In this section, we present an example for which the existing

error measures in Eqs. (7) and (10) are unit inconsistent whereas
the novel energy error measure in Eq. (21) obtains unit-consistent
results. Furthermore, we test the existing error measures and the
novel energy error measure for an iterative solver which com-
putes solutions of MLCPs obtained from a brick wall simula-
tion. We show that the solver error decreases continuously for
the novel measure as expected for an iterative solver.

Case Study
We illustrate the unit consistency issue of the existing error

measure using a discrete time, frictionless model of a rigid rod,
shown in Figure 3, which is initially at rest, i.e. v = 0. An exter-
nal moment Tx = 10 Nm is applied about the centre of mass G of
the m= 1.5 kg heavy rod which contacts the ground in two points
at both ends of the rod under the effect of gravity g = 9.81 [m

s2 ].
The diameter of the rod is negligible with respect to its length of
l = 1.5 m. The constraint Jacobian J, the mass matrix M, and
applied forces fa are determined to be

J =

[
0 0 1 − l

2 0 0
0 0 1 l

2 0 0

]
, M = diag

{
mE3×3,

1
12

ml2, Iy,
1
12

ml2
}
,

fa =
[

0 0 −mg Tx 0 0
]T

,
(22)

z

G

1
2 l

y

1
2 l

2

g

Tx

1

x x2x1

FIGURE 3. Rigid rod contacting the ground in two points

where E3×3 is the 3×3 identity matrix and Iy is small.
We assume that the constraints are to be enforced exactly,
i.e. there is no constraint relaxation. Given the time step
size h = 0.01 s, we formulate an LCP to determine the
constraint impulses x = [x1, x2]

T
and constraint-space veloci-

ties w = [w1, w2]
T

at the two contact points

[ 4
m −

2
m

− 2
m

4
m

][
x1

x2

]
+

[
vz− l

2 ωxl−h
(
g+ 6

ml Tx
)

vz +
l
2 ωxl−h

(
g− 6

ml Tx
)]=[

1 1
kg −0.5 1

kg

−0.5 1
kg 1 1

kg

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+

[
−0.2981 m

s

0.1019 m
s

]
︸ ︷︷ ︸

b

=

[
w1

w2

]
︸ ︷︷ ︸

w

,

0≤ x⊥ w≥ 0,
(23)

where vz = 0 [m
s ] and ωx = 0 [ 1

s ].
We consider a principal pivoting method [1] starting with

the initial guess that the constraint impulse x1 and the constraint-
space velocity w2 are zero. Then, it follows directly from
Eq. (23) that x2 =−0.1019 [Ns] and w1 =−0.2981 [m

s ], both of
which violate the nonnegativity conditions. Physically, x2 can be
interpreted as an adhesive impulse acting in negative z-direction
to prevent the contact at point 2 from detaching. This leads to a
negative value for w1 which is the resulting velocity of the rod at
contact point 1 so that the rod would penetrate the ground.

The novel unit-consistent error measure can also be applied
to an LCP since this is a special case of the MLCP where lll = 0
and u→ ∞. Measuring the solver error for this scenario using
the Fischer-Burmeister function in Eq. (7) results in δφFB =
|δφFB,1|+ |δφFB,2| = |w1|+ |x2| = 0.2981 [m

s ] + 0.1019 [Ns],
where δφFB,1 and δφFB,2 are computed using Eqs. (5) and
(6). We can see that δφFB has no physical meaning be-
cause velocity and impulse components simply cannot be
added. It is apparent that this unit inconsistency also occurs
if the solver error is determined using the natural residual.
The unit-consistent energy error measure overcomes this
issue through calculation of the energy error components
equivalent to the error in w1 and x2. The constraint errors
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FIGURE 4. Brick wall example

measure the energy error associated with a constraint and
can be determined to be δe1 =

1
2a11

w2
−,1 = 4.44 ·10−2 [J]

and δe2 =
1
2 a22δx2

l,2 = 5.2 ·10−3 [J] using Eqs. (16) to
(20). Now, we can compute a unit-consistent system error
δe = δe1 +δe2 = 4.96 ·10−2 [J] using Eq. (21).

Simulation Results
We test the novel energy error measure for the example in

Figure 4 which consists of a stack of 30 boxes laid out in a brick
wall pattern. The brick wall is 12 bricks tall, and we alternate
between rows of two or three bricks in width. Furthermore, there
are small lateral gaps between two adjacent bricks. We use a
direct solver to accurately simulate the wall behavior and store
an MLCP for each of the 500 time steps. Then, the projected
Gauss-Seidel (PGS) iterative method is used to find a solution
of the different MLCPs with 100 solver iterations for each time
step. Iterative solvers are known to converge to a solution by con-
tinuously improving the solution with every iteration. Hence, we
expect the error to decrease with the number of iterations. Note
that it is possible that iterative solvers do not converge to the solu-
tion. This depends on the physical problem and the mathematical
properties of the MLCP lead matrix. Convergence is guaranteed
only if the spectral radius of matrix A is smaller than one.

Figure 5 shows the results for the solver error per iteration
defined by the Fischer-Burmeister error measure δφFB, the natu-
ral residual error measure δφres, and the energy error measure δe.
Only the latter treats physical units consistently. The set of re-
sults contains the solver error per iteration for T̄ = 500 time steps
for which we compute the average error and the standard devia-
tion. The average energy error per time step µe is defined as

µe =
1
T̄

(
T̄

∑
k=1

δe(tk)

)
, (24)

where δe(tk) is the energy error at time tk, and the standard de-
viation of the energy error σe is given as

σe =

√√√√ 1
T̄ −1

(
T̄

∑
k=1
{δe(tk)−µe}2

)
. (25)

The average and standard deviation for the Fischer-Burmeister
and natural residual solver errors can also be calculated using this
approach by replacing δe(tk) by the respective error δφFB (tk)
and δφres (tk) at time tk.

The three plots on the right of Figure 5 show the iteration-
error curves for all 500 time steps. The three plots on the left il-
lustrate the average values of the solver error µFB, µres, and µe as
well as the upper and lower error limits given by the average plus
or minus the standard deviation of the solver error µFB±σFB,
µres±σres, and µe±σe. The latter visualizes the amount of vari-
ation of the solver errors over the time steps. The small vertical
gap between the averages µFB, µres, as well as µe and the upper
and lower limits µFB±σFB, µres±σres, as well as µe±σe in-
dicates that the variation of the solver errors is relatively small
for the different time steps as expected for a motionless example.
For the error curves of the Fischer-Burmeister and the natural
residual error measures, the solver error increases in the first ten
iterations, reaches a maximum, and then it decreases exponen-
tially with the iteration count. The error curves for the energy
error measure do not show any error increase in the first ten it-
erations which is more realistic for a convergent iterative solver.
Moreover, the exponential decay is steeper than for the other er-
ror measures. This is apparent since the energy error decreases
quadratically with wi and xi whereas the Fischer-Burmeister and
the natural residual error descend linearly with wi and xi.

On the right of Figure 5, we observe that all error curves start
from similar error values which then diverge from each other
with an increasing number of iterations. The iterative PGS solver
is initialized with the same value λλλ = 0 for all time steps, i.e. it
is not warm started using the solution of the last time step. Thus,
the error value is similar in the first iteration of each time step
before it converges toward zero at varying rates. The presented
error measure does not intend to capture all error sources in the
simulation but only the error due to the MLCP solver. Note that
the accuracy level obtained by the PGS solver would not be suf-
ficient to keep the brick wall permanently stable. It would take
several thousand iterations to maintain stability long term. How-
ever, the objective of this example is not to present accurate sim-
ulation results for the stable brick wall simulation but merely to
show that the solver error decreases with the iteration count for
the novel unit-consistent measure.
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DISCUSSION
Figure 5 shows that the energy error decreases when the

solver converges to the solution of the MLCP. The energy error
measure behaves qualitatively similar to the Fischer-Burmeister
and the natural residual error, except for the first ten iterations
where only the energy error shows the expected decay. We have
shown that only the energy error measure computes the solver
error in a unit consistent manner and it reaches zero error if and
only if a valid solution to the MLCP is found. The unit-consistent
measure does not require any reference solution which is a ma-
jor advantage since it can be costly to compute a reference for
large-scale problems.

Moreover, the cost of computing the energy error does not
significantly impact the overall MLCP solution algorithm per-
formance for direct solvers even if the error is obtained in every
iteration. Thus, the computation can be done for real-time simu-
lations without affecting the performance noticeably. If a direct
solver is not able to terminate due to a time constraint, we can
monitor all the iterations and determine the solution with the least
energy error, and use this solution for further calculations. This
would allow us to obtain a better solution and possibly improve
the numerical stability.

CONCLUSION
The most used error measures for MLCP solvers do not take

the physical nature of mechanical models into account, which
leads to an inconsistent treatment of units. The proposed unit-
consistent error measure defines an energy error per constraint
by means of the effective mass, which solves the unit consistency
issue through the transformation of impulse and velocity errors
into energy errors. Furthermore, simulation results illustrate that
the energy error decreases monotonically when the MLCP solver
converges to the solution. The computational cost of the novel
error measure is inexpensive in comparison to the overall cost of
an MLCP solver iteration of direct solvers.

As future work, the unit-consistent error could be used to
stop the MLCP solver if a solution of the MLCP is found which
is close enough to the true solution. This requires the definition
of an error threshold which classifies what solution will be con-
sidered as close enough to the the true one and which therefore
affects the solution accuracy. It is particularly challenging since
the required accuracy of a solution depends on the engineering
application and the simulation scenario.
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FIGURE 5. Brick wall example in Figure 4 solved by PGS, on the left solid lines illustrate the average errors and the dashed lines the upper and
lower error limit given by the average plus or minus the standard deviation, on the right each line represents the iteration-error curve for one time step
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