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Abstract

Computationally efficient simulation of multibody systems is important in many applications.
However, some parts of the system, which can be regarded as stiff subsystems, often need to
be simulated at a high time-rate to prevent the system from being unstable [1]. These can include
cables under high tension, flexible subsystem models and actuators with non-linear dynamics. In
this paper, the dynamics of a multibody system is formulated using a co-simulation approach, so
that the stiffer subsystem can be simulated at a higher time-rate than the rest of the system.

A subsystem is identified as the fast subsystem and the rest of the system forms the slow sub-
system. The ratio between the corresponding time-steps is assumed to be an integer N = hs/hf,
where hs and hf are the time-step size of the slow and fast subsystems. The fast subsystem needs
to be simulated for N time-steps before the slow subsystem steps forward, and therefore, some as-
sumptions regarding the evolution of the slow subsystem during this time-steps need to be made.
The simplest is to assume that the slow subsystem can be considered “stationary” for the duration
of the slow time step. While the classical co-simulation approaches rely on the extrapolation of
interface variables, such as velocities or forces [1, 2]. Here, a reduced order representation of the
slow subsystem will be used to emulate its behaviour during the time-step of the slow subsystem.
Similar techinques are also applied in gluing algorithms, where subsystem interface quantities are
used, e.g., the interface flexibility [3].

Consider that the interface kinematics between the subsystems is described by r equations ar-
ranged in array g(qs,qf), where qs and qf contain the generalized coordinates of the slow and fast
subsystems. In this case, the interface velocities are

ġ = us +uf = Asvs +Afvf (1)

where vs and vf contain the generalized velocities of the slow and fast subsystems, respectively,
and As and Af are the corresponding Jacobian matrices. Using this partitioning, the dynamic
equations of the subsystems can be written as

Msv̇s = fs +AT
s λλλ (2)

Mfv̇f = ff +AT
f λλλ (3)

where Ms(qs) and Mf(qf) are the mass matrices of the subsystems, fs(qs,vs, t) and ff(qf,vf, t) are
the generalized forces, and λλλ represents the r interface forces.

Let v0
s and v0

f denote the velocities of the subsystems at the beginning of the slow subsystem time-
step, and use v1

s and vN
f at the end of the same time-step. Then, a time-stepping scheme can be de-

rived by introducing the finite difference approximation of the accelerations v̇= (vk−vk−1)/h, and
using constraint relaxation to handle the constraints. With the reduced representation of the slow
subsystem parametrized by the interface velocities uk

s = Asvk
s , for k = 1 . . .N, equations (2) and (3)
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and
uk

s = uk−1
s +M̃−1

s hfλλλ
k +AsM−1

s hff0
s (5)

where M̃s =
(
AsM−1

s As
)−1 is the effective mass matrix of the slow subsystem projected to the

space of interface velocities collected in us. Quantities with subscript “s” depend on the configu-
ration of the slow subsystem, and they are computed with q0

s during the N time steps of the fast
subsystem. Subscript “ f ” denotes the dependency of certain quantities on the configuration qk−1

f
of the fast subsystem. The r × r identity matrix is denoted by I; and C and D are the diagonal
matrices containing the constraint relaxation and stabilization coefficients ci = (ki +bi/hf)

−1 and
di = ciki, for i = 1 . . .r, where ki and bi are the interface stiffness and damping, respectively.

Once the N time-steps have been computed for the fast subsystem, the values of the interface force
λλλ

k, for k = 1 . . .N, can be applied to the slow subsystem using the average λ̄λλ = 1
N ∑

N
k=1 λλλ

k, see
Figure 1. This is because the total impulse applied on the fast subsystem is ΛΛΛf =∑

N
k=1 hfλλλ

k, and the
configuration of the slow one is kept constant along the time-step. Therefore, using that hs = Nhf,
the impulse applied on the slow subsystem must be given by ΛΛΛs = hsλ̄λλ s. Then, the slow subsystem
can step forward in time as

v1
s = v0

s +M−1
s hs

(
f0
s +AT

s λ̄λλ

)
(6)
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Figure 1: Fast and slow subsystems.

The key idea here, is twofold. First, we have a fast subsystem, and we represent the impulse of
the slow subsystem on it by using a reduced model of the slow subsystem, parametrized by the
interface velocities us, and the effective mass of the slow subsystem M̃s. Secondly, the effect of the
fast subsystem on the slow subsystem is taken into consideration by applying the average forces
exerted by the fast subsystem during the slow time step.

The methodology proposed here has been formulated for multibody systems, with which several
examples have been tested. Nevertheless, this idea can be further extended to other fast mechanic
or mechatronic systems interacting with the slow multibody system, the effective mass of which
can be used to emulate its behaviour at the interface. Moreover, the calculations required in the
simulation are reduced by only computing the fast subsystem at a small time-step, and improving
performance without compromising much accuracy.
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