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On the Generalized Friction Cone for Multibody Systems
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Abstract
The use of the Coulomb friction model is considered to be representative for modelling contact. One of the

most important element in this model is the friction cone. It arises from the fact that the static friction force has a
threshold value, and therefore, all the possible contact force vectors of a sticking contact point must lie whithin the
cone.

The generalized friction cone [1, 2] takes the dynamics of the system into account, and interprets the friction
cone in the configuration space of the system. This representation is very useful to analize different phenomena
related to friction, such as the Painlevé paradox [2]. However, the fact that this cone is in the multi-dimentional
configuration space makes it hard to visualize it. Here, the equation of the generalized friction cone projected to
the contact velocity space is derived, so that it can be used to represent and visualize it in a 3-dimentional space.

Assuming isotropy in the tangent plane of the contact point, the limit of the friction force is defined as

∥λt∥=
√
λT

t λt ⩽ µλn (1)

where λt is the friction force, λn is the normal force, and µ is the friction coeficient, which is assumed to be equal
for the static and kinetic friction. Equation (1) represents the classic friction cone (κµ ), with the quadratic matrix
form

κµ(λc) = λT
c Qµλc =

[
λt
λn

]T [I2×2 0
0 −µ2

][
λt
λn

]
⩽ 0 (2)

where λn ⩾ 0, and I2×2 is the 2×2 identity matrix.
For the analysis of the contact dynamics in a multibody system, it is useful to consider a reduced representa-

tion of the system in the space of the contact velocities

uc =

[
ut
un

]
=

[
Atv
Anv

]
= Av (3)

where ut and un are the tangential and normal relative velocity components at the contact point of interest, A
is the contact Jacobian matrix, and v contains the generalized velocities of the system with the mass matrix M.
The infinitesimal change of the contact velocities can be related to the contact forces by the effective mass matrix
Mc =

(
AM−1AT

)−1, so that the differential of the contact force impulse dΛc = λcdt = Mcδuc. Note that the
incremental change δuc only accounts for the contact forces. Nevertheless, other forces might also contribute to
the total incremental change of the contact velocities duc = δuc + δu0

c , where δu0
c accounts for the change of uc

due to the rest of forces acting on the system.
A quadratic expression for the contact velocity changes δuc can be derived from Eqn. (2) by using the afore-

mentioned expression,

κg(δuc) = δuT
c Qδuc = δuT

c
(
McQµ Mc

)
δuc =

[
δut
δun

]T [Qt Qtn
QT

tn Qn

][
δut
δun

]
⩽ 0 (4)

where Qt and Qn are characteristic elements of the matrix Q and will be defined below. This homogenious quadratic
equation represents the projection of the generalized cone into the contact velocity space.

As in the clasic cone κµ , the friction coefficient affects the geometry of the generalized cone κg. For µ = 0 the
cone degenerates into a line given by the parametrization δuc = AM−1Anλndt. This line represents the space of
constrained motion associated with the contact constraint projected into the contact velocity space, also known as
natural contact direction in [3]. It can be interpreted as the direction in which the contact velocity varies due to the
normal contact force alone. In case of frictionless collisions, this direction is important because all non-impusive
forces are usually neglected and only the impulses of the normal force are taken into account. On the other hand,
for µ → ∞ the cone degenerates into a plane given by the parametrization δuc = AM−1Atλtdt. This plane is not
directly related to either the natural contact direction or the plane δun = 0, see Figure 1.

In general, Q is a full-rank symmetric matrix that represents an elliptic cone κd without any particular shape.
Nevertheless, its geometry in some cases can be of interest and help to better understand the dynamics of multibody
systems with frictional contacts. For instance, it is clear from Eqn. (4) that the direction δut = 0 is located inside



the cone if and only if Qn ⩽ 0. It can be shown that this occurs for values of the friction coefficient greater than a
critical value [4], µ ⩾ µcrit = ∥Mth∥ =

√
hTM2

t h, where Mt = (AtM−1AT
t )

−1 and h = AtM−1AT
n depend on the

configuration of the system. The critical friction coefficient µcrit plays an important role in single-point collisions
with friction, in which sliding cannot restart if µ ⩾ µcrit. This fact is consistent with the dynamic cone, because
δut = 0 is possible in such a case (i.e., it is inside the cone, see Figure 1), and therefore, the contact force alone can
keep the contact point without sliding.

Another particular aspect of the generalized cone is its intersection with the plane δun = 0, which is a de-
generate conic described by the quadratic equation δuT

t Qtδut = 0. The intersection is different from a point (the
vertex of the cone) if and only if detQt ⩽ 0, and it can be shown that this occurs if the friction coefficient is greater
than a value, µ ⩾ µjam = ∥Mnh∥−1 =

(
Mn

√
hTh

)−1, where Mn = (AnM−1AT
n )

−1 also depends on the configura-
tion of the system. In such a case, dynamic jamming (or jamb) [1, 2, 4] can happen if the contact point is sliding
in a particular direction which gives δun ⩽ 0. This phenomenon gave rise to the Painlevé paradox, in which the
dynamic equations of a rigid body with Coulomb friction in the contacts are shown to have no solution for certain
kinematic states (i.e., configuration and velocity), or even several possible solutions [1, 2].
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Figure 1: Projection of the generalized friction cone (κg) to the contact velocity space of a rod at 45o with the
ground for different friction coefficients.

As an example, let us consider a single rod in contact with the ground at 45o. Figure 1 shows the generalized
cone for different friction coefficients, as well as the limit cases µ = 0 and µ → ∞. All the particular cases
discussed above are also shown, and even though it is just one body in contact, this example is representative of
a general case. Moreover, it is also shown the cone for the caracteristic varlues µcrit and µjam. For high friction
coefficient (µ > µjam), it can be seen how sliding to certain directions gives δun < 0, which presents the paradoxal
situation where the dynamic equations have several solutions or none.

This new representation of the generalized friction cone gives a geometric tool that helps to understand the
dynamics of multibody systmes with frictional contacts. It is not only consistent with all the theories involving the
Coulomb friction model [1, 2, 4], but it also captures the paradoxal behaviour of the model.
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