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The simulation of multibody systems with contacts presents some well-known challenges, especially when it
involves frictional contacts. Moreover, dealing with large systems and many contacts makes it much harder to
achieve good simulation performance. That is why some authors have proposed several formulations with the
form of Linear Complementarity Problems (LCP). For example, Stewart and Trinkle [1]] proposed a position-level
integration scheme for multibody systems with frictional contacts, while Anitescu and Potra [2] formulated it at
the velocity-level. In both cases, a linear approximation of the Coulomb friction model was used.

With the aim of improving the numerical behaviour of the Coulomb model due to non-smoothness, several
authors [3. 4] have proposed friction models using the bristle approach, which models the surface asperities with
flexible elements. Essentially, this approach defines the stiction force in terms of the average bristle deflection s as

Fstic = —ka (1)

where k;, is the effective bristle stiffness, and the sliding velocity v is integrated to compute the bristle deflection
as s = [vrdt. However, other phenomena might also be taken into account, such as bristle damping, viscous
friction, or the Stribeck and dwell-time effects.

The complementarity formulation proposed here consists in a velocity-level representation for multibody sys-
tems with contacts and other constraints, where a bristle friction model is used. Let q be the p x 1 array of
generalized coordinates of a multibody system. A set of n generalized velocities v is defined, such that q = I'v,
where I'(q, ) is the p x n transformation matrix. With this representation of the system, the dynamic equations are

Mv+c= fapp + fbilat + fcont + ffric (2)

where M(q) is the n X n mass matrix, ¢(q,v) is the n x 1 array containing the Coriolis and centrifugal terms,
fapp is the generalized applied force, fyjjac and feone are the generalized bilateral and unilateral constraint forces,
respectively, and fy;. is the generalized friction force.

The m bilateral constraints (holonomic and non-holnomic) are defined at the velocity level as Av = (), where
A(q) is the m x n constraint Jacobian matrix. For the r contacts, i.e., unilateral constraints, the gap functions that
define the distance between contacting surfaces are arranged into the array ®(q) > 0. Then, the normal serparation
velocity is @ = Nv > 0, where N(q) is the r x n contact Jacobian matrix.

With the above kinematic constraint equations, the generalized forces for the bilateral constraints and the con-
tacts are defined as fyjjc = AT and f.one = NT Ay, where X contains the m multipliers of the bilateral constraints,
and Ay contains the r normal contact forces. Due to its unilateral nature, the normal force cannot be negative, and
have to be zero when separation occurs, so the complementarity condition is defined between Ay and ®.

The tangent plane of each contact point is characterized using two orthogonal directions, in which the compo-
nents of the sliding velocity at the contact points can be expressed as v = Dv, where D(q) is the 2r x n friction
jacobian matrix. Therefore, the generalized friction force is fgic = DT\, where Ay is the array that contains the
2r components of the friction forces.

In order to calculate the friction force, the sliding velocity is integrated explicitly to get the average bristle
deflection of the next instant s* = s~ + hv;., where the superscripts * and ~ denote next and current instant,
respectively, and 4 is the time-step size. Then, the friction force array becomes

Af = —Krs* = A; —K7hDv' 3)



where K7 is a 2r x 2r diagonal matrix containing the bristle stiffnesses, and A;; = —Krs™ is the friction force
of the previous instant. The above expression shows that the average bristle deflection is no longer necessary to
calculate the friction force, because all the needed information is contained in the previous friction force A;.

In the bristle model, the boundary of the static friction force is the same as the Coulomb model, which imposes
a limit to the magnitude of the friction force vector. However, an approximation is made here, and the limits
are enforced component-wise; so that the dynamic equations can have a linear form. Then, the lower and upper
bounds for the two components of the friction force at the i-th contact point are A ; = —;Ay; and Ari = +1idy;,
respectively, where Ay, is the normal force at the previous instant. Nevertheless, a few iterations can be performed
in order to make the boundaries tend to £uAy.

The velocity-level formulation is achieved by means of a first order discretization, so that the generalized
velocities of the next instant are v = v~ + hv™'. This expression is introduced into Eq. (2)), and together with the
constraint equations and the expression for the friction force components in Eq. (3)), they can be expressed in the
following from
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where C7 = (KThZ) 71, and " and o are the slack variables for )\; € [0,+00) and A? € [AT,XT] respectively.
This form is known as Mixed Linear Complementarity Problem with Bounds, which is the general version of the
LCP, where an interval is defined for each variable.

Simulations have been carried out with the model of a wheel (Fig. [I] left) with one contact point with the
ground, and the initial conditions make it slide for 2 seconds. The results have been compared with the bristle
model proposed by Liang et al. [4]], which is the non-linear version of the formulation presented here.
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Fig. 1: Model of the wheel on the ground (left) and error of the simulation compared with the Liang et al. [4] (right).

This formulation can be easily enhanced by relaxing the constraints to make it able to cope with redundancy.
Nevertheless, the bristle model on its own allows the system to handle redundancy coming from the friction.
Though a velocity regularization of the stiction force solves the same problem, the sliding artifact does not appear
when using the bristle model.

References

[1] D.E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and
coulomb friction,” International Journal for Numerical Methods in Engineering, vol. 39, pp. 2673-2691, 1996.

[2] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body contact problems with friction as solvable linear
complementarity problems,” Nonlinear Dynamics, vol. 14, pp. 231-247, 1997.

[3] Y. Gonthier, J. McPhee, C. Lange, and J. C. Piedboeuf, “A regularized contact model with asymmetric damping and
dwell-time dependent friction,” Multibody System Dynamics, vol. 11, no. 3, pp. 209-233, 2004.

[4] J. Liang, S. Fillmore, and O. Ma, “An extended bristle friction force model with experimental validation,” Mechanism
and Machine Theory, vol. 56, pp. 123-137, 2012.



